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Abstract

We study how network architecture shapes learning in medium-sized groups using laboratory
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Behaviorally, subjects under-react to new information and under-imitate better-informed neigh-
bors. Removing private signals from central agents improves outcomes. Networks with central
influencers thus perform poorly even with accurate signals. Neither myopic Bayesian nor naïve
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1 Introduction

In forming beliefs and making decisions, individuals integrate private information—drawn from their
own knowledge and experiences—with insights gained by repeatedly observing others’ behavior.
The extent to which an individual can observe others and incorporate their actions depends on their
position in the social network, the overall structure of that network, and their beliefs about how
their neighbors process the information they encounter. This iterative updating—where private
beliefs are revised in light of social observation—is pervasive. It arises in many domains, ranging
from consumer purchases of products that are visible mainly to close acquaintances (e.g., home
appliances, mattresses), to belief formation about workplace culture (e.g., whether and how to
renegotiate wages), and even in everyday decisions such as an adolescent’s choice of whether to wear
a bicycle helmet.

The theoretical literature on information aggregation in networks typically focuses on the
asymptotic dynamics of societies of infinite size. This literature predominantly studies two benchmark
approaches. One assumes fully Bayesian agents, who optimally extract all available information
from their private signals, the network structure and the observed behavior of neighbors, often
under the assumptions of myopia and the ability to communicate their beliefs (e.g. Gale and Kariv
(2003), Acemoglu et al. (2011), Mueller-Frank (2013), and Mossel et al. (2015)). The other follows
the DeGroot model (DeGroot (1974)) to posit naïve agents, who update their beliefs by simply
averaging the beliefs of their neighbors (e.g. DeMarzo et al. (2003), Golub and Jackson (2010, 2012),
and Acemoglu and Ozdaglar (2011)). Some studies adopt hybrid approaches, including frameworks
where agents are neither fully Bayesian nor purely naïve (e.g., Bala and Goyal (1998), Goyal and
Vega-Redondo (2005), and Mueller-Frank and Neri (2021)), or they allow for populations with
heterogeneous updating rules (Chandrasekhar et al. (2020)). The key insight from this literature is
that, under mild conditions on network structure, agents’ inference abilities, and signal properties,
beliefs in connected societies tend to converge to the truth.1

By contrast, experimental studies of information aggregation in networks have mostly focused on
very small groups, typically involving 3 to 7 participants. A notable exception is Choi et al. (2023),
who study three networks with 40 participants each.2 Most of these experiments are urn-guessing
games played over undirected networks, where each participant receives an initial noisy, informative
signal about a predefined state and must repeatedly update their guess of the true state based on
dynamically acquired information from their direct neighbors’ actions. These experiments generally

1Mobius and Rosenblat (2014), Golub and Sadler (2016) and Bikhchandani et al. (2024) provide excellent surveys
of this literature. Bikhchandani et al. (2024) conclude that “An overarching conclusion ... is that egalitarianism in
network structure, formalized in various ways, promotes information aggregation and welfare. This lesson holds across
a variety of Bayesian, quasi-Bayesian, and heuristic settings.”

2Several studies report experiments conducted in physical or virtual laboratories using networks of size between
15 and 50 nodes (see Berninghaus et al. (2002), Kirchkamp and Nagel (2007), Cassar (2007), Kearns (2012), Charness
et al. (2014), Becker et al. (2017), Choi et al. (2017), Cardoso et al. (2020), Choi et al. (2024a,b), Bigoni et al. (2025)).
However, none of these studies involve observational learning in settings where the network structure is explicitly
revealed to subjects. As Choi et al. (2016) emphasize in the context of information aggregation: “Further experimental
research is required to identify the type of bounded rationality ... [we have] ... to investigate how this updating varies
with the size and complexity of the network, as the largest network explored so far has only 7 individuals.”
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find deviations from Bayesian updating and require adjustments to match observed behavior to the
naïve model.

We identify two key limitations in these literatures. First, many real-world social networks are
neither infinitely large nor as small as those studied in most experiments. Second, the prevailing
focus on just two decision-making paradigms—Bayesian and naïve—limits the ability to account
for deviations from rationality that are central to behavioral economics. By conducting laboratory
experiments with relatively large networks, we aim to uncover both structural and behavioral
frictions that influence individual-level information aggregation and the overall performance of
different network structures.

Following prior experimental work, we conduct a series of urn-guessing games on undirected
networks. Unlike most studies, we use networks with 18 nodes—substantially larger than is typical
in this literature. Building on recent research in sociology and organizational science, we select six
network architectures—alongside the Complete network—that incorporate at least one of two key
features commonly observed in real-world networks: hierarchy, where a central node connects to
all others, and cohesiveness, where subsets of nodes form tightly connected cliques. In each game,
the true state is randomly determined by the computer to be either White or Blue, with equal
probability. Each participant then receives a noisy private signal about the state that is correct
with a probability of 70%. In the first round, participants make an initial guess about the state.
From the second round onward, they first observe their direct neighbors’ guesses from all previous
rounds and then they place their own guesses. The game concludes when no player changes their
guess for three consecutive rounds. Participants are incentivized to guess correctly in each round.

We first characterize the dynamics of each network and signals’ realizations under two models:
the myopic Bayesian model and the naïve DeGroot model. We use the predictions of these two
models to evaluate the behavior of our experimental subjects. One important feature that we use
in our analysis is the notion of frictions, i.e., impediments to information aggregation, which we
define based on the myopic Bayesian model. We focus on two types of frictions: the theory-based
structural frictions that occur even when all agents behave optimally and data-driven behavioral
frictions which are observed deviations from optimal behavior.

In our theoretical analysis we distinguish two types of structural frictions. An unavoidable
structural friction occurs when myopically Bayesian agents are not able to aggregate information
dispersed among them given the signals they received. A cognitive structural frictions occurs in
situations in which successful information aggregation is feasible under the Bayesian benchmark,
but requires an exceptionally high level of sophistication from decision-makers. Our characterization
highlights several network architectures used in the experiment that are susceptible to these structural
frictions under some signal distributions.

Then, we move to evaluate network performance using an Aggregate Learning Index (ALI),
which measures the extent to which participants revise incorrect private signals into correct final
guesses. While the Complete network exhibits the highest level of information aggregation, its
performance still falls short of the predictions generated by both the Bayesian and naïve models.
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Single-Aggregator networks—where one node is connected to all others—perform comparably to
the Complete network when the number of correct signals is slightly greater than the number of
incorrect signals, but, surprisingly, fail to improve as the number of correct signals increases. As a
result, these networks often fail to aggregate information effectively, even when a large majority of
participants receive correct private signals. In contrast, Cluster(s) networks—where the network
includes one or two large cliques—are responsive to the overall signal quality. They match the
performance of the Complete network when most signals are correct but frequently fail when the
signals’ realization across participants is close to a tie.

To unpack the sources of these aggregation failures, we analyze behavior at the positional level.
We find that most of the informational dynamics unfold in the first three rounds. Any reasonable
model of myopic agents predicts that participants rely on their private signals in the first round.
Indeed, in more than 92% of cases, participants’ initial guesses align with their private signals.
Before making their second-round guess, participants observe the guesses of their direct neighbors
in the first round. Both the Bayesian and the naïve models predict that participants would follow
the majority of signals inferred from their neighbors’ guesses, combined with their own private
signal. However, we find that across all networks and positions, participants who belong to the local
minority systematically under-react to new information from their neighbors’ first-round guesses
and tend to stick with their own initial guess. Notably, this friction diminishes as the strength of the
evidence in favor of the majority signal increases. This behavior is consistent with well-documented
under-reaction to new information, observed across a wide range of settings (Benjamin (2019)). We
refer to this behavior as the first behavioral friction.

In round three, indirect information from non-neighboring nodes becomes accessible. According
to Bayesian benchmark, agent i should imitate their direct neighbor, agent j (the influencer), if agent
j is strictly better informed than i and all of i’s other neighbors. However, we observe systematic
under-imitation across all networks and positions when the second-round guess of the influencer
differs from that of the potential imitator. This finding is consistent with prior experimental
studies in sequential social learning settings, where participants tend to imitate predecessors less
frequently than optimal when imitation requires going against their private signal (Weizsäcker
(2010), Ziegelmeyer et al. (2013)). We show that imitation rates in our setting are far too low to
be explained solely as a rational response to under-reaction to new information. In addition, we
establish that under-imitation is not a result of naïve behavior. We refer to the under-imitation
behavior as the second behavioral friction.

Our analysis reveals that these two behavioral frictions are closely related. In particular, we
identify behavioral patterns suggesting that under-imitation may reflect a lack of confidence in
the informational value of the influencer’s behavior. First, imitation rates increase when the local
majority supports the influencer rather than the potential imitator. Second, imitation becomes
more likely when the influencer is observed to switch their guess between the first and second
rounds—indicating that they are not under-reacting to new information.

To further examine these two behavioral frictions—and their relationship—we conduct a targeted
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intervention designed to mitigate under-reaction to new information. We focus on the One Gatekeeper
network, in which 9 participants form a clique and the remaining 9 “leafs” are each connected solely
to the same clique member, the “aggregator.” In each game of the new treatment, non-aggregators
receive the same private signal as in the original sessions, whereas the aggregator receives no signal—a
design feature known to all participants. This intervention significantly improves performance:
ALI increases; over 70% of aggregation errors in the original sessions—among aggregators initially
in the minority—are eliminated; and imitation rises among participants who disagree with the
aggregator—particularly leafs and second-round minority clique nodes. Together with prior evidence,
these results suggest that the observed low levels of imitation relates to an excessive lack of trust
in the aggregator’s second-round behavior, which reflects their under-reaction to new information.
When a clear reason for trust is introduced (i.e., the aggregator has no private signal), imitation
increases accordingly.

Our final step is to link the micro-level behavioral frictions and the structural frictions to
aggregate-level performance. The complete network under-performs due to under-reaction to new
information—an effect that intensifies as signal quality declines. Single Aggregator networks suffer
from compounded behavioral frictions: under-reaction by the aggregator and excessive under-
imitation by the other participants. Moreover, the aggregator’s under-reaction appears insensitive
to the size of the first-round minority—possibly due to the absence of monitoring—so performance
does not improve even as signal quality increases. Finally, performance in Cluster(s) networks is
hindered by both structural and behavioral frictions. These frictions are particularly damaging
when aggregate signal quality is weak, resulting in poor performance. However, they are largely
neutralized when signal quality is high, allowing these networks to match the performance of the
complete network under strong signals.

Taken together, our findings indicate that neither the myopic Bayesian model nor the standard
naïve DeGroot model provides a satisfactory account of the long-run outcomes and behavioral
patterns observed across the networks we study. We further show that several natural extensions,
such as adding noise to the Bayesian model, allowing higher weight on self or time dependence in
the naïve weights, or positing a population mixture of Bayesian and naïve agents, also fail to match
the data. Instead, explaining behavior in our laboratory networks requires incorporating systematic
behavioral frictions and, when relevant, structural frictions.

While a full theoretical treatment is beyond the scope of the present paper, we discuss three
directions for theoretical settings that account for these frictions. The first is a behavioral-Bayesian
approach that incorporates switching costs incurred when participants change their guess; these
switching costs should depend on the strength of the evidence in favor of switching and on monitoring
pressures. The second is a procedural-heuristic approach that modifies the equal-weights naïve
model by assigning additional weight to one’s own previous guess, to the previous guess of an
informationally advantaged neighbor (the influencer), and to the influencer’s past behavior. Finally,
the third approach proposes a mixture model where agents exhibit one of the various extended
behaviors suggested in the literature (e.g., Bayesian agents who accommodate noise and heuristics-
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using agents with asymmetric weights); each of these behaviors aligns with some empirical findings
while conflicting with others, but their mixture may fit the data nicely. A precise description and
analysis of these models and their empirical implication within our data and for other types of
networks, is a natural direction for future research.

The remainder of the paper is organized as follows. Section 2 surveys the experimental literature
on information aggregation in networks. Section 3 describes the experimental design. Section 4
presents the Bayesian and naïve benchmarks. For each benchmark, we outline general insights
into the predicted behavior and apply these predictions to the network structures used in our
experiment. Section 5 analyzes network-level performance using the ALI, examines the dynamics
of the aggregation process, and evaluates the predictions implied by the myopic Bayesian and the
naïve models. Section 6 analyzes positional behavior in the first three rounds and in the final round
of the game; in this section, we demonstrate the role of behavioral and structural frictions in the
aggregation process. Section 7 introduces our intervention and reports its outcomes. Section 8
connects the macro-level results to the identified behavioral and structural frictions and highlights
the network positions that consistently perform well or poorly. We conclude by documenting the
incompatibility of alternative models beyond the Bayesian and naïve benchmarks with the data,
and by proposing three approaches for augmenting existing frameworks for information aggregation
to be consistent with the data. Formal statements, proofs, and robustness exercises are provided in
the theoretical and empirical appendices.

2 The Experimental Literature on Information Aggregation on Networks3

Experimental research on small-group dynamics began in the 1950s with the “MIT Experiments”
or “Bavelas Group Experiments” (see Shaw (1964) for a survey and follow-up work). In these
studies, groups of 3–5 participants were placed in interconnected cubicles and communicated through
written messages (or verbally) via wall slots (or intercom devices). Information about a puzzle was
distributed among participants, who used the available communication network to collaboratively
solve it.4 These experiments demonstrated that the structure of the communication network signifi-
cantly influenced problem-solving efficiency: centralized networks (e.g., star) outperformed others
when information needed to be collected in a single location, while decentralized networks (e.g.,
cliques) were more effective when further processing was required. Central positions, however, often
suffered performance declines under heavy cognitive load—a phenomenon described as “saturation,”
“vulnerability,” or “over-information.” For a modern counterpart, see Bernstein et al. (2023).

While in these puzzle-solving experiments, as in persuasion bias experiments,5 each participant
receives a unique piece of information essential to solving the task, information aggregation experi-

3For an early survey see Section 2.5 in Choi et al. (2016).
4In the initial design, each participant received a card containing several symbols, with only one symbol common

to all cards. The task was to identify this shared symbol (Bavelas (1950); Leavitt (1951)).
5In persuasion bias experiments, subjects receive noisy numerical signals and are incentivized to estimate the

group average, relying on network-mediated information processing (Corazzini et al. (2012); Brandts et al. (2015);
Battiston and Stanca (2015)).
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ments differ in that each participant receives a noisy signal about the true state of the world. In this
context, the network governs what information is available when forming beliefs about the state.

Building on the experimental literature on social learning (e.g., Anderson and Holt (1997)),6

Choi et al. (2005, 2012) were the first to study information aggregation over networks. Using
directed networks of size 3 and signal accuracy 2

3 , they implemented a 3× 3 design: three networks
(Complete, Star, Circle) crossed with three signal distribution conditions.7 They found that a
myopic Bayesian model fits the data well when augmented with exogenous logistic shocks to the
preferences and allows subjects to respond to these trembles (Quantal Response Equilibrium model).
Choi (2012) generalized this framework using a Cognitive Hierarchy QRE model and concluded
that the dominant cognitive type is closely related to Bayes-rational behavior.

Subsequent work extended the analysis to slightly larger networks, where Bayesian inference
becomes cognitively demanding. Much of the recent literature therefore evaluates how well simpler
alternatives—especially the naïve heuristic—describe observed behavior (see Section 4 for a detailed
description of the myopic Bayesian model and the naïve heuristic). Grimm and Mengel (2020) study
undirected networks of size 7 and signal accuracy 4

7 , implementing a 3× 2× 3 design: three network
topologies (Star, Circle, Kite); two signal distributions (each with exactly four correct signals);
and three information conditions.8 They find that behavior varies across information treatments
and interpret this as evidence against the naïve model. However, under full information, the naïve
model performs comparably to Bayesian predictions at the aggregate level and outperforms it at
the individual level. Moreover, they propose an adjusted naïve heuristic in which the weight on
one’s private signal increases with the clustering coefficient, while weights on neighbors’ signals
decrease and remain equal.9 This adjusted rule outperforms both standard Bayesian and naïve
models in two additional networks tested in the laboratory. Chandrasekhar et al. (2020) conduct
two experiments—one with Indian villagers and another with Mexican university students—on
undirected networks of size 7, using signal accuracy of 5

7 . They use predictions of the Bayesian and
naïve models to find that the naïve model fits the behavior of Indian villagers significantly better
than that of Mexican students. They then use structural estimation to fit a mixture of Bayesian
and naïve agents in the experimental sample. Estimated shares of Bayesian agents are around 10%
in the Indian sample and 50% in the Mexican sample.

6One-shot sequential learning designs on directed networks have been implemented in laboratory settings by
Brown (2020), who use networks of size 5 with signal accuracy 0.7, and by Dasaratha and He (2021), who use random
networks of size 40 with signals drawn from a Gaussian distribution.

7Full information: every player receives a signal; High information: every player receives a signal in probability 2
3 ;

Low information: every player receives a signal in probability 1
3 .8No Information (only direct neighbors known), Incomplete Information (degree distribution known), and Complete

Information (entire network revealed). In their 2-urn treatment, Mueller-Frank and Neri (2015) implemented a No
Information condition and a similar design using networks of size 5 or 7 and signal accuracy 2

3 . They focus on testing
behavioral axioms, which they later use to introduce a Quasi-Bayesian updating model.

9A different adjustment to the naïve heuristic is suggested by Jiang et al. (2023). They conduct a neuro-imaging
study on undirected networks of size 7 with signal accuracy 5

7 , where one subject is scanned with fMRI while others
participate from standard lab settings. Subjects observe neighbors’ guesses sequentially (rather than simultaneously).
They find that from the third round onward, brain activity reveals greater weight placed on guesses from well-connected
neighbors.
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A study of particular relevance to our setting is Choi et al. (2023), who investigate three directed
networks of size 40 with signal accuracy 0.7. Their baseline Erdős–Rényi network is compared with
a Stochastic Block model to study cohesiveness, and a pre-selected Royal Family network to explore
hierarchy. Using primarily aggregate-level analysis, they conclude that the naïve model provides a
much better fit than the myopic Bayesian benchmark.

3 The Experiment

Here we describe the networks we study and present the details of the experimental protocol.

3.1 Networks

Recent research in sociology and organizational science has identified hierarchy and cohesiveness as
two distinct, fundamental features of real-life networks (e.g. McFarland et al. (2014) and Bernstein
et al. (2023)). Our experimental design focuses on undirected networks exhibiting at least one of
these features. We operationalize hierarchy by introducing a central node connected to all others, and
cohesiveness through the inclusion of cliques (i.e., fully connected subsets of nodes). Furthermore,
most networks in our design are pairwise stable under simple variations of the well-known strategic
network formation game described in the connections model introduced by Jackson and Wolinsky
(1996).10 Following this rationale, we chose the following seven networks, each with 18 members.

• The Complete network is a fully connected set of 18 nodes (a clique). This network represents
the upper bound for information aggregation when there are no connectivity restrictions.

Complete

• Core periphery networks are characterized by two distinct types of positions: the core and
the periphery. In our design, the core consists of 9 members who are directly connected to
each other, forming a clique. The periphery comprises 9 members, each connected to a single
core member. We examine two variants of this structure. In the Symmetric Core Periphery
network, each peripheral node is linked to a distinct core member, resulting in a balanced
distribution of connections between the core and periphery (Bala and Goyal (1998) refer to a
similar directed network as a “Royal Family”). In the One Gatekeeper network all peripheral
nodes are connected to a single core member, referred to as the “Gatekeeper”. Note that the
Gatekeeper is connected to all other nodes. This creates a hierarchical structure where the
Gatekeeper serves as the sole intermediary between the core and the periphery.

10For an overview, see Chapter 6 in Jackson (2008). For the specific network structures, refer to Jackson and
Wolinsky (1996), Jackson and Rogers (2005), and Persitz (2010).
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One Gatekeeper Symmetric Core Periphery

• Hub and Spokes networks feature two types of positions: the hub, which is connected to all
other agents (as the Gatekeeper in the One Gatekeeper network), and the spokes, which may
or may not be connected with each other. The two chosen networks feature disconnected
spokes (Star) and locally segregated neighborhoods of spokes (Connected Spokes).

Star Connected Spokes

• Multiple cliques networks include two cliques of size 9 that are sparsely connected. The two
chosen networks differ in the number of connections between the cores. The Two Cores with
One Link network exhibits a single connection between two connectors, one from each clique.
The Two Cores with Three Links network features a single connector in one clique that is
directly connected to three nodes in the other clique.

Two Cores with One Link Two Cores with Three Links

3.2 Experimental Protocol

Main game. In each session, a group of 18 participants plays 10 repetitions of the main game
with one of the network structures described above. At the beginning of the main game, participants
are randomly assigned a position in a network and observe its visual representation depicting all the
connections between the players. At the same time, nature randomly determines the state, which is
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Figure 1: Screenshot of Beginning of Round 2, One Gatekeeper Session
Notes: The screenshot, taken at the beginning of round 2 of game 1, displays the experimental interface used in the
One Gatekeeper network session as seen by Player D. On the left, the network configuration (fixed throughout the
game) is shown: the subject’s role (Player D) is highlighted with a yellow circle, while Player D’s direct neighbors are
marked with red-filled circles; all other participants appear as hollow circles. Below the network image, participants
interact with decision buttons. When either the WHITE or BLUE button is selected, the SUBMIT button becomes
active, allowing the participant to submit their guess. On the right, a table summarizes the participant’s own guesses
and those of their direct neighbors from all previous rounds—the current view shows the guesses from round 1.
Navigation arrows above the table enable participants to review their guessing history across rounds. Additionally,
the private signal, which remains unchanged throughout the game, is displayed beneath the history table.

either WHITE or BLUE with equal chance. The state is fixed for the duration of the game and is
shared by all eighteen players. Before the first round, each player gets a partially informative private
signal about the state; the signals are conditionally independent and are correct with a probability
70%. After observing private signals, players are prompted to guess the state. In round two, and all
the subsequent rounds, players can observe guesses made by their direct neighbors in all previous
rounds and guess the state again. The information about neighbors’ guesses is summarized in an
intuitive way on the screen and is accessible at any point in time throughout the game (Figure 1).
That is, we implement perfect recall by providing participants with all the information they have
observed at any point in the game, and allowing them to quickly access this information. We chose
this intuitive, comprehensive, and accessible interface to isolate the effect of network architecture on
learning, minimizing potential confounds such as imperfect memory or incomplete information.

Whereas most information aggregation experiments (e.g. Choi et al. (2005, 2012) and Mueller-
Frank and Neri (2015)) impose a fixed predefined number of rounds, we chose not to do so in order
to avoid “last-round effects” and to ensure that information aggregation is exhausted. In our design,
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# of sessions and their location
UCI UCSD TAU OSU # sessions # subjects

Complete 2 2 1 0 5 sessions 106 subjects
Star 2 1 1 2∗ 6 sessions 121 subjects
One Gatekeeper 2 2 2 0 6 sessions 122 subjects
Symmetric Core Periphery 6∗ 0 0 0 6 sessions 120 subjects
Connected Spokes 2 2 2 0 6 sessions 122 subjects
Two Cores with One Link 2 2 2 0 6 sessions 120 subjects
Two Cores with Three Links 2 2 0 2∗ 6 sessions 122 subjects

Table 1: Experimental Sessions

Notes: The number of sessions conducted at each location for each network is reported. In the last two columns we
summarize the total number of sessions per network and the total number of participants per network. ∗ indicates
sessions that were conducted online due to the closure of physical labs during COVID-19 times.

the game ends in one of two ways. First, the game ends when all eighteen players submit the same
guesses in three consecutive rounds. These do not have to be the same guesses across players, but it
has to be the case that no player changes her mind in the last three consecutive rounds.11 Second,
if the game reaches round 50, then there is a 50% chance that each next round is the last one.
We use this ending procedure as a safeguard against situations in which some players continue to
switch endlessly (Chandrasekhar et al. (2020) use random termination as the only game ending
scheme). Participants are rewarded for the accuracy of their guesses. Specifically, at the end of the
experiment, one game is randomly selected for payment. Then, one round of this chosen game is
randomly selected for payment (Azrieli et al., 2018). A participant receives $20 if she guesses the
state correctly in this chosen round and $5 if her guess is wrong.12 We provide the instructions for
the One Gatekeeper network game in Section A.1 of the Empirical Appendix.

Other experimental details. At the end of the experiment, subjects complete several incen-
tivized short control tasks. These include the elicitation of risk attitudes (Gneezy and Potters
(1997)) and their tendency to probability match—i.e., to choose an action with a frequency equal
to the probability of that action being optimal, a clearly suboptimal heuristic.13 Section A.3 of
the Empirical Appendix provides these tasks as well as an additional short demographic survey.
Measures derived from these tasks are used as controls in the individual-level analysis (see Section
A.4 of the Empirical Appendix for details).

We conducted 47 sessions. Each session lasted on average 90 minutes and the average total
11The diameter of a network is the longest shortest path between any two agents. The diameter is considered to be

a natural baseline for the number of periods required for information to flow through the entire network. The largest
diameter in our networks is three, which dictates our choice of three rounds of “inactivity” as an indication that the
subjects exhausted their learning potential.

12The payments in the experiments that took place in Israel were 60 NIS for a correct guess and 15 NIS for an
incorrect guess.

13Probability matching has been documented across various domains (see Humphreys (1939), Grant et al. (1951),
Siegel and Goldstein (1959), Loomes (1998), and Rubinstein (2002)). See Footnote 7 in Choi et al. (2012) for an
example of probability matching in an information aggregation experiment. Rivas (2013) provides a recent account of
the connection between probability matching and reinforcement learning. Agranov et al. (2023) study experimental
methods for mitigating probability matching in the laboratory.

11



payment was $23.9, including $7 participation fee. To make sure that the rules of the game were
common knowledge, the experimenter read the instructions out loud and all participants had to
complete a comprehension quiz and answer all the questions correctly (see Section A.2 of the
Empirical Appendix). Because of the large number of subjects required for our experiments, we
conducted the experiment at four different locations: the University of California in Irvine, the
University of California in San Diego, Ohio State University, and Tel Aviv University.14,15 The early
sessions were conducted using the Multistage software developed at Social Science Experimental
Laboratory in Caltech. Due to incompatibility issues between Multistage and newer versions of
JAVA we switched to oTree while keeping the interface and the procedures identical (Chen et al.,
2016). Finally, due to the COVID-19 pandemic, the last 10 sessions were conducted online rather
than in a physical lab. The subject pool for the online sessions was the same as in the physical lab
and we kept the protocol identical between the two types of sessions (for a comparison see Section
A.6 of the Empirical Appendix and Rigotti et al. (2023)). Table 1 summarizes the experimental
sessions.16

4 Theoretical Benchmarks

In Section 4.1, we introduce the theoretical setting. Sections 4.2 and 4.3 then present two benchmark
models. The first assumes that agents are myopic Bayesian utility maximizers and that this is
a common knowledge. The second is a heuristic behavior model that follows the naïve-learning
framework of DeGroot (1974). In Section 4.4, we apply these predictions to the network structures
used in our experiment. Throughout, for clarity and conciseness, we state the main results informally
with their intuitive explanations. Formal statements and proofs are relegated to Sections B and C
of the Theoretical Appendix.

4.1 Belief Formation over Communication Networks: Theoretical Setting

Consider an undirected network G =< N,E > where N = {1, 2, . . . , n} is the set of agents and
E is the set of edges. The edge ij ∈ E indicates that agents i and j are directly connected.
B(i) = {j : ij ∈ E} denotes the set of agent i’s direct neighbors with cardinality b(i). We assume
that there are no isolated agents, i.e., ∀i : b(i) > 0. A subset of agents, C ⊆ N , forms a clique in G
if (i) each pair of agents in this subset is directly connected, ∀i, j ∈ C : ij ∈ E, and (ii) there is no

14We conducted a few pilot sessions at the Experimental Economics Laboratory in Ben Gurion University of the
Negev. The goal of these sessions was mainly to test the functionality of the software. These pilot sessions had different
network structures in each game of a session, which resulted in a much noisier behavior than when participants play
the same game 10 times.

15The experiments were approved by Caltech IRB #14-0456 and Tel Aviv University Ethics Committee. We started
running the sessions in 2014, at which time the pre-registration was still not very common for laboratory experiments.

16In each session, more than 18 participants were recruited. At the start of each game, 18 subjects were randomly
assigned to play, while the rest served as observers. No subject was assigned the observer role in two consecutive
rounds. Observers chose one network position whose payoff they would receive if the game was selected for payment.
Their information was only the network structure. Thus, they were incentivized to select the position they perceive as
the most desirable. We analyze observer choices in Agranov et al. (2025).

12



other agent that is connected to all clique members, ∀k ∈ N\C,∃i ∈ C : ik /∈ E.
There are two equally probable states of nature, ω ∈ {WHITE,BLUE}. Every agent i receives

a signal s(i) ∈ {w, b}. Conditional on the realized state ω, signals are independently and identically
distributed across agents and match the true state with probability q ∈

(
1
2 , 1
)
. If ω = WHITE

then s(i) = w with probability q and s(i) = b with probability 1− q; similarly, if ω = BLUE then
s(i) = b with probability q and s(i) = w with probability 1− q. The signals’ accuracy parameter q
is common knowledge, but the state of nature ω is unknown to the agents.

The belief formation dynamics begins after the state is realized and the agents receive their
private signals. In each round t ∈ {1, 2, . . . }, agent i chooses an action at

i ∈ A = {W,B}. In round 1,
the only information available to the agent is her own private signal. In later rounds, before making
a choice, each agent observes the past actions of her direct neighbors. We assume perfect recall:
in every round, they can observe their own private signal, their past actions, and the complete
actions’ history of their direct neighbors. In each round, the agent’s objective is to guess the state
that corresponds to the majority of private signals. An agent’s payoff is 1 for a correct guess and 0
otherwise. In case of a tie, any guess is considered to be correct.

4.2 The Myopic Bayesian Model of Belief Formation over Communication Networks

Assume that all agents are myopic Bayesian utility maximizers, and that this is common knowledge.
That is, each agent knows her own signal, takes a myopically optimal action in each round, and
dynamically forms beliefs about the other n− 1 signals (see discussion in Golub and Sadler (2016)).
The model’s assumptions are briefly discussed in Section A of the Theoretical Appendix. The
discussion below is based on Lemmas 1 to 5 in Section B of the same appendix.

In the first round, since the signals are informative, all agents choose the action that corresponds
to their private signal. Due to the common knowledge that everyone is myopic Bayesian, agents
know that their direct neighbores’ disclose their private signals through their first-round actions
which are observed before taking the second round’s action. This feature of the model has an
important implication for subsequent play: any additional information agents acquire after the first
round pertains only to their beliefs regarding the signals of non-neighbors (N\({i} ∪B(i))).

In the second round, optimal behavior consists of choosing the action that matches the majority
of first-round actions among an agent’s direct neighbors. Given the first-round behavior, this is
equivalent to following the majority of private signals in the agent’s local neighborhood. Because
it is common knowledge that all agents are myopic Bayesian utility maximizers, each agent can
infer some information about the private signals of their neighbors’ neighbors after observing the
second-round actions.

Optimal behavior from the third round onward is more difficult to characterize in general, as it
depends on the network structure, the agent’s position within it, and the realized distribution of
signals. However, Agranov et al. (2024) provide a characterization of network positions for which it
is optimal to imitate a selected neighbor. Intuitively, imitation is optimal for agent i when one of her
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neighbors, j, possesses strictly superior information relative to i and to each of her other neighbors.17

Formally, agent j is said to be better informed than her neighbor, agent i, if B(i)∪{i} ⊂ B(j)∪{j},
denoted by j B i. Under the myopic Bayesian model, such an informational advantage implies that
j has nothing to learn from i’s inferences. That is, if j B i, then j should ignore i’s actions after
observing her private signal in the first round. Moreover, if j is also better informed than all of i’s
other neighbors, then j possesses every piece of information that might reach i through alternative
paths, before i receives it herself. Hence, agent i, by imitating agent j (∀t > 2 : at

i = at−1
j ) does

not forgo any potential future information. Define the set of i’s neighbors who are strictly better
informed than i and all her other neighbors as C(i) = {j ∈ B(i)|∀k ∈ {B(i)\{j}} ∪ {i} : j B k}.
Proposition 1 from Agranov et al. (2024), re-stated below, shows that if C(i) is non-empty, it must
be a singleton containing the unique neighbor whom i should imitate—referred to as the “influencer”.

Proposition 1. Let i ∈ N . Then, C(i) is either empty and imitation could lead to sub optimal
behavior by agent i or it is a singleton, C(i) = {j}, and ∀t > 2 : at

i = at−1
j is optimal for agent i.

Many positions in our experimental networks satisfy this characterization. Therefore, under the
myopic Bayesian model, imitation is the optimal strategy for agents in those positions.

4.3 The Naïve Model of Belief Formation over Communication Networks

The influential model of naïve belief formation introduced by DeGroot (1974) describes a specific
simple heuristic: in each period t > 1, agents update their beliefs by taking a weighted average of
their own belief and the beliefs of their direct neighbors from period t− 1.18 We focus here on the
simplest version of this model, in which each agent assigns equal and fixed weights of 1

b(i)+1 to her
own belief and to each of her b(i) neighbors. In our binary setting—where the state, signals, and
actions are binary—this rule is sometimes referred to as the DeGroot action model. It implies that
agents guess according to their private signal in the first round, and follow the local majority of
period t− 1 in each subsequent round t > 1. In the case of a tie, either action is permissible. For a
formal statement see Definition 1 in Section B of the Theoretical Appendix.

The behavior of naïve agents in the first two rounds is straightforward: they report their private
signal in the first round and follow the majority of their local neighborhood’s first-round guesses in
the second. This implies that naïve agents are behaviorally indistinguishable from myopic Bayesian
agents during the first two rounds, since both rely on their private signal in round 1 and on the
local majority in round 2.

A key feature of collective naïve behavior is the rapid stabilization of beliefs within highly
17Bala and Goyal (1998) introduced the imitation principle, which posits that in environments with feedback—where

agents observe payoffs and take into account only the actions of their direct neighbors—imitating a neighbor who
earns a higher payoff is optimal and results in equilibria with similar payoffs across agents. By contrast, the setting
examined by Agranov et al. (2024) lacks feedback, and agents form beliefs based not only on their direct neighbors
but also on their indirect ones. In this framework, imitation is optimal when one direct neighbor is better informed
than the agent and all her other direct neighbors.

18For surveys, see Section 8.3 in Jackson (2008) and Section 3 in Golub and Sadler (2016). The Naïve belief
formation model can be represented as a Quasi-Bayesian model of Mueller-Frank and Neri (2021) with a specific
functional form.
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cohesive groups (see Morris (2000)). Consider a clique C in network G and some distribution of
private signals. Let Ĉ denote the subset of members in C for whom the observed first-round majority
in their local neighborhood coincides with the first-round majority in C. Proposition 2 shows that if
Ĉ is sufficiently large, then its members follow the clique’s majority from the second round onward
and maintain it indefinitely with no regard to information outside the clique.19 For the formal
statement of Proposition 2 denote, for every clique member i ∈ C, the subset of neighbors that are
not in the clique by B−C(i) = {j ∈ N\C|ij ∈ E} and their cardinality by b−C(i) = |B−C(i)|. The
proof is relegated to Section B of the Theoretical Appendix.

Proposition 2. Let C be a clique of size m in G. Denote the difference between the number of
clique members that recieved the private signal w and those that recieved the private signal b by
γC = |{i ∈ C|s(i) = w}| − |{i ∈ C|s(i) = b}|. With no loss of generality assume that γC ≥ 0.
Consider Ĉ = {i ∈ C|b−C(i) < γC}. If maxi∈Ĉ b

−C(i) < 2|Ĉ| −m, then, ∀i ∈ Ĉ,∀t ≥ 2 : at
i = W .

4.4 Predicted Dynamics Network-by-Network

In this section, we use both the Bayesian model and the naïve model to derive predictions regarding
the dynamics of guesses across the seven networks implemented in our experiment. Formal statements
and complete proofs are provided in Section C of the Theoretical Appendix. The section concludes
with Table 2, which offers a concise summary of the theoretical predictions.

The Complete network In the Complete network, there are no connectivity restrictions as all
agents are directly connected. Under both the Bayesian and the naïve models, if there is no tie in
the signals’ distribution, agents will converge to the correct guess already in the second round, with
no further switches. In the case of a tie, neither model yields a prediction.

Networks with a single aggregator Three networks— the One Gatekeeper, the Star, and the
Connected Spokes—feature a single aggregator, that is, a single node connected to all other nodes.20

Under the myopic Bayesian model, and assuming no tie in the signal distribution, all agents converge
to the correct guess by the third round, with no further switches thereafter. In round 1, each agent
reports their private signal, allowing the aggregator to observe the full signal distribution. In round
2, the aggregator reports the majority signal, while non-aggregators follow their local majorities.
From round 3 onward, all non-aggregators imitate the aggregator, who, for each of them, satisfies
the conditions for being an influencer as characterized in Proposition 1.

19Proposition 2 analyzes the behavior of naïve agents in cliques, whereas Proposition 1 in Chandrasekhar et al.
(2020) examines naïve consensus behavior in clans, and Proposition 2 in Mueller-Frank and Neri (2021) highlights
failures of information aggregation by naïve agents. Despite these differences, all three results rest on a common
principle in the DeGroot action model: highly connected naïve agents are unlikely to change their actions beyond the
first few rounds. A similar idea appears in Golub and Jackson (2012) in the context of the DeGroot belief model,
where Proposition 3 shows that the rate of convergence of beliefs in a multi-type random network is determined by
the rate of learning across cohesive groups, rather than within them.

20Formally, a network with a single aggregator contains a unique node i, referred to as the aggregator, such that
B(i) = N\{i}, while for any other node, j 6= i, B(j) ⊂ N\{j}.
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The naïve model requires a separate analysis for each network. We begin with the Star network,
where the non-aggregators (the “leafs”) are completely disconnected from one another. The predicted
dynamics arises from the behavior of naïve leafs: if a leaf agrees with the aggregator, she maintains
her guess; if she disagrees, she may switch. Specifically, if the aggregator’s private signal corresponds
to the majority signal, then all agents holding that signal continue to report it in all subsequent
rounds. However, if the aggregator’s private signal corresponds to the minority signal, she switches
her guess and triggers possible subsequent switches by the leafs. This dynamics continue until the
aggregator’s guess aligns with the majority’s guess.

In the Connected Spokes network, a single aggregator connects multiple cliques of varying sizes.21

Building on Proposition 2, in any clique with a strict first-round majority, the non-aggregators adopt
the majority guess in round 2 and never switch thereafter. In the case of a tie, their guesses remain
undetermined until a majority emerges, after which they follow it consistently. The aggregator
monitors the overall distribution of guesses across all agents and may continue to switch as long as
ties persist within some cliques (for a similar reasoning see Choi et al. (2023)).

Finally, in the One Gatekeeper network the gatekeeper is the sole member of the core clique
connected to peripheral hangers-on.22 Due to the rapid convergence of the core (Proposition 2), if
the core’s majority signal coincides with the global majority signal, most agents guess correctly by
round 3 at the latest. However, if the core’s majority is incorrect, a substantial share of agents may
quickly converge on the wrong guess.

The Single Aggregator networks illustrate the contrasting implications of the two models for
information aggregation. In the Bayesian model, agents assume others are myopic Bayesian and
recognize that the aggregator’s second-round guess reflects all private signals. As a result, they
optimally imitate her, and information flows perfectly through the aggregator. In contrast, in the
naïve model, the aggregator is treated as just another peer, so her influence diminishes with the
size of the local neighborhoods. In fact, the results show that non-aggregators embedded in cliques
often form their final beliefs before even observing the aggregator’s guess in round 2. Thus, in the
naïve model, information rarely flows through the aggregator.

The Symmetric Core–Periphery Network The Symmetric Core–Periphery network consists
of two equal-sized groups of n

2 agents each (n is even and greater than 4): a fully connected core
and a periphery of disconnected nodes, each linked to a unique core member.

According to the Bayesian model, agents follow their private signals in the first round. If a clear
majority emerges in the core (i.e., the difference in signal frequencies exceeds 1), all core members
adopt the majority guess from the second round onward, and peripheral agents begin imitating
them in the third round. If there is no clear majority, the dynamics depend on whether n

2 is even or

21Formally, a Connected Spokes network with aggregator i consists of a collection of cliques C1, . . . , Cm, each
satisfying 3 ≤ |Cj | ≤ n

2 − 1, such that any two distinct cliques share only the aggregator in common: for all j1 6= j2,
Cj1 ∩ Cj2 = i.

22A One Gatekeeper Network is a core periphery network in which the core consists of n = m + 1 agents: the
aggregator i and the set C(G) = j1, . . . , jm. The periphery consists of n agents, K(G) = k1, . . . , kn, each of whom is
connected only to the aggregator. We assume n is odd.
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odd. When n
2 is even, information aggregates perfectly: the core agents guess the global majority

from the third round, and the periphery imitate them from round 4. When n
2 is odd, some core

agents are indifferent in round 2, and the model yields no definitive prediction.
Interestingly, under the naïve model, core agents behave identically to their Bayesian counterparts.

However, peripheral agents are less predictable: from round 3 onward, they follow the local majority
(which may be tied) rather than imitating their connected core member.

These results highlight that, in most cases, core agents —whether naïve or myopically Bayesian
— base their decisions solely on the signals within the core. This can be detrimental. Consider, in
the myopic Bayesian model, for example, the case where n = 18: if six core members receive signal
w and the remaining 12 agents receive signal b, then all agents converge to the incorrect guess w
from round 3 onward. The reason is that information from the periphery does not reach the core,
as each core agent observes only one peripheral neighbor and cannot aggregate across them. In
such cases, where aggregation fails despite all agents behaving myopically rationally under common
knowledge, we say that information aggregation is impeded by an unavoidable structural friction.23

Networks with Two Cores and a Few Bridging Links Networks with two cores consist of
two internally connected cliques of equal size (n

2 , with n even and greater than 4), connected by a
small number of bridging links. In the Two Cores with One Link network, a single bridging link
connects agent i from one clique with agent j from the other; these two agents are the connectors. In
the Two Cores with Three Links network, three agents i1, i2, i3 from one clique are each connected
to a common agent j in the other clique (agents i1, i2, i3, and j are the connectors).

Under the naïve model (assuming n
2 is odd), the dynamics follow directly from Proposition 2:

from the second round onward, agents follow the majority within their clique (with connectors
potentially deviating in round 2). Aggregation failures appear when, after the first round, the
majority in one clique is W while the majority in the other is B, even if a global majority exists.

Bayesian dynamics are more intricate. According to Proposition 1, non-connectors imitate the
connectors from the third round onward.24 Successful information aggregation thus hinges on the
connectors’ ability to communicate across cliques. However, communication becomes difficult when
signal distributions induce conflicting local majorities—precisely the cases where the naïve model
fails. In such instances, a connector cannot fully convey the information regarding the signals
observed within her clique using only a binary action. Nevertheless, for the parameters used in our
experiment, we show that when connectors disagree in round 2, successful communication is still

23These results mirror the “royal family” argument proposed by Bala and Goyal (1998) for directed networks. It
may also be understood as an instance of the related “Majority Illusion” (see Lerman et al. (2016) and Jackson (2019)).
Bikhchandani et al. (2024) argue that such networks lack egalitarianism. Given our experimental parameters (n = 18,
q = 0.7), the probability of incorrect aggregation by myopic Bayesian agents due to an unavoidable structural friction
in the symmetric core–periphery network is approximately 2.35%.

24Proposition 1 does not apply to non-connectors in the clique containing i1, i2, i3 in the Two Cores with Three
Links network. As shown in Result 9.2 (Theoretical Appendix), if i1, i2, and i3 are unanimous in period t− 1, then
non-connectors follow them in period t; otherwise, they infer indifference and guess randomly.
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Network Myopic Bayesian Model Naïve Model
Complete Always correct from t ≥ 2 (1). Always correct from t ≥ 2 (1).

If the aggregator recieves the majority’s
Star Always correct from t ≥ 3 (2). signal, most are correct from t ≥ 2.

Otherwise, indeterminate (3).
Non-aggregators guess by local majority

Connected Spokes Always correct from t ≥ 3 (2). from t ≥ 2. The aggregator aggregates
their choices (4).
Non-aggregators in the core guess by

One Gatekeeper Always correct from t ≥ 3 (2). local majority from t ≥ 2. In most cases,
the others follow whether correct or incorrect (5).

In most cases, the core members
Symmetric Core aggregate only their own signals. In most cases, the core members
Periphery The leafs imitate from t ≥ 3 (6). aggregate only their own signals (6).

Possible Unavoidable Structural Frictions
If both cores agree, they follow
the agreed guess from t ≥ 2.

Two Cores with Possible Unavoidable Structural Frictions Agents guess by the majority of
One or Three Links Otherwise, slow convergence their local core from t ≥ 2 (8, 10).

to the correct guess (7, 9).
Possible Cognitive Structural Frictions

Table 2: Summary of Theoretical Predictions
Notes: Formal statements and proofs appear in Section C of the Theoretical Appendix and the relevant result number
is referenced throughout the table in parenthesis.

possible—as long as agents correctly interpret the information conveyed by not switching.25 While
we demonstrate that successful aggregation is theoretically possible in such cases, it requires an
extraordinary high level of reasoning, even under common knowledge of rationality. We refer to
these cases—where aggregation is possible in the myopic Bayesian model but requires unusually
elevated reasoning—as instances of cognitive structural friction.26

5 Aggregate Analysis

This section analyzes the collective performance of subjects in aggregating dispersed private in-
formation across different network structures. We begin by describing the data (Section 5.1) and
introducing an aggregate learning index used to quantify information aggregation (Section 5.2).
We then use this index to examine how efficiently each network structure facilitates information
transmission as a function of the aggregate quality of the private signals (Section 5.3). Next, we
examine the dynamics of the aggregation process, focusing on how long it takes for learning to
converge (Section 5.4). We conclude with a summary of the main results (Section 5.5) and an
evaluation of the predictions implied by the myopic Bayesian and the naïve models (Section 5.6).

25Similar dynamics of information exchange appear in Geanakoplos and Polemarchakis (1982) (and demonstrated
by the classic “cheating spouses” logic puzzle). However, in our setting, communication is through binary actions
rather than posteriors. Thus, the general results in Geanakoplos and Polemarchakis (1982) do not directly apply. For
a detailed example see Section C.11 of the Theoretical Appendix.

26Two Cores networks are also susceptible to unavoidable structural frictions under the myopic Bayesian model
(e.g., the Two Cores with One Link network with n = 18 where three non-connectors in each core and both connectors
receive the signal w, while the others receive the signal b). The probability of such a case is bounded from above by
0.69% (0.98% for the Two Cores with Three Links network).

18



5.1 Data

We collected data from 410 games played across the seven network structures described in Section
3.1 (see Table 1 for details). Our analysis follows three guiding principles. First, in the experiment,
the goal of each subject was to guess the correct state of nature. However, in a finite setting, it
might happen that the realized majority of signals differs from the true state. In the 10 games
where the majority of private signals did not match the true state selected by the computer, we
redefine the state to align with the majority of signals.27 Second, we exclude games in which the
number of each signal type is equal, since in such cases every guess is considered to be correct.
Third, we exclude games where participants failed to converge—defined as cases in which at least
one participant continued to revise their guess beyond round 50.28 These two exclusions eliminate
48 of the 410 games (11.7%).

We refer to signals that match the majority of all signals in the network as correct, and those
that do not as incorrect (or wrong). To capture the informativeness of the initial signal distribution
at the network level, we categorize each game into one of three signal-quality levels: weak, average,
or strong. Specifically, we label games with weak signals as those in which 10 or 11 participants
receive correct signals; games with average signals as those in which 12 or 13 participants receive
correct signals; and games with strong signals as those in which at least 14 participants receive
correct signals. This classification ensures a reasonably balanced distribution across signal categories:
22% of games begin with weak signals, 40% with average signals, and 38% with strong signals.

5.2 Defining a Measure of Information Aggregation

We use the term learning to refer to changes in participants’ posterior beliefs resulting from observing
others’ actions. In our design, we observe participants’ coarse actions rather than their beliefs, so
learning is not always directly observable. Indeed, we can only definitively state that a participant
has learned if they report a guess differing from their initial signal. We say a participant learns
correctly if they initially receive an incorrect signal but ultimately make a correct guess. In contrast,
incorrect learning occurs when a participant initially receives a correct signal but ultimately reports
an incorrect guess. To evaluate how network structure affects information aggregation, we construct
an Aggregate Learning Index (ALI), which captures these observable instances of learning.29

Definition. For each game g, let CSg denote the number of correct signals and ISg denote
the number of incorrect signals (CSg+ISg equals the network size in game g). For every round t in

27This event is rare given our experimental parameters. Theoretically, it happens about 2% of the time (see Table
2 in Section B of the Empirical Appendix).

28This game-termination scheme was triggered in only 31 of the 410 games, with some heterogeneity across network
types: from no activations in the Symmetric Core-Periphery network to nine in the Complete network. Notably, 22 of
these 31 terminations occurred in the first two games of a session.

29See Choi et al. (2023) for a similar index. Choi et al. (2005) introduce the “stability measure”: a related but
distinct index based on switching behavior.
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game g, let CGg
t denote the number of correct guesses submitted. Then, we define:

ALIgt =



CGg
t−CSg

ISg CGg
t > CSg

0 CGg
t = CSg

CGg
t−CSg

CSg CGg
t < CSg

ALI is an intuitive measure of overall information aggregation success in game g at the end of
round t. Specifically, if the number of correct guesses in round t exceeds the number of correct
initial signals, ALI represents the net fraction of participants who learned correctly relative to the
total number of participants with incorrect initial signals. Conversely, if the number of correct
guesses falls below the number of correct initial signals, ALI is negative and reflects the net fraction
of incorrect learners relative to the total number of participants with initially correct signals.

Importantly, ALI takes values in the interval [−1, 1]. A value of 1 represents absolute information
aggregation: all participants with incorrect signals revise correctly, and those with correct signals
retain their initial signals. Conversely, a value of −1 indicates complete aggregation failure: all
participants with correct signals revise incorrectly, and no participant with an incorrect signal
updates. When no participant deviates from their initial signal, ALI equals zero.

A notable property of ALI is its composition invariance. Consider two games, g and h, each with
18 participants. In both games, 12 participants initially receive correct signals (CSg = CSh = 12)
and 6 receive incorrect signals (ISg = ISh = 6). Suppose further that in round t, 14 correct guesses
occur in both games (CGg

t = CGh
t = 14). In game g, among the 14 correct guesses, 12 participants

initially received correct signals, whereas in game h, only 8 initially received correct signals. Despite
these differences, in both games, the ALI equals 1

3 . Thus, ALI provides a high-level measure of
learning outcomes, abstracting from detailed individual-level learning outcomes. One might argue,
however, that the extent of learning in game h is greater than in game g, because a higher fraction of
participants with initially incorrect signals learned correctly, even after accounting for participants
with initially correct signals who guessed incorrectly. To capture these individual-level differences,
we introduce a second measure, the Individual Learning Index (ILI), which measures the success
of learning at the individual level. Section C of the Empirical Appendix is devoted to an extensive
analysis of ILI.

5.3 Learning Outcomes in the Long-run

Figure 2 presents scatter plots of network-specific end-game ALIs as a function of the fraction of
correct initial signals for each network. The bubble size corresponds to the number of observations
with identical outcomes. In discussing empirical patterns exhibited in Figure 2, we focus on absolute
success and failure statistics in learning and on the relationship between the extent of learning and
the initial signal distribution.

We use the Complete network as the benchmark for our analysis, as it imposes no restrictions
on nodes’ connectivity and thus offers the greatest potential for aggregating dispersed private
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Figure 2: Aggregate Learning Indices, by network

Notes: The fraction of correct signals is on the horizontal axes. The final round ALI is on the vertical axes. The size
of the bubble corresponds to the number of observations. The straight lines are the linear fit. The p-value reports the
test for the null hypothesis that the slope of the linear fit equals zero against a one-sided, positive, alternative in a
regression using clustered standard errors at the session level.

information about the state of the world. Importantly, information aggregation is not absolute
even in the Complete network. However, its scatter graph features two important properties. First,
participants in the Complete network almost always learn correctly, in aggregate.30 Second, the
rate of aggregate correct learning responds positively to the quality of initial signals (i.e. games
with stronger signals achieve higher end-game ALIs).

Figure 2 provides a natural partition of the non-complete networks we studied. The first
group consists of networks in which ALI responds positively to signal quality, while in the second
group, no such association is found. This difference maps clearly onto the two structural features
discussed in Section 3.1. The first group—networks where ALI and informativeness positively
correlate—comprises the Symmetric Core Periphery network, the Two Cores with One Link network,
and the Two Cores with Three Links network. Each of these networks features one or two cliques
of 9 nodes; we label them Cluster(s) networks. The second group—networks where ALI and
informativeness do not positively correlate—comprises the Star network, the Connected Spokes

30We observed only one game (out of 38) in which most participants converged to the minority signal (the only dot
below the zero horizontal line in the Complete network diagram in Figure 2). The initial distribution of signals in that
case was 10-8.
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Figure 3: Rates of Information Aggregate Successes and Failures, by Network

Notes: Panel A reports the frequency of relative information aggregation failures (ALI < 0) in the second column;
the frequency of complete aggregation failures (the final majority guess is incorrect) in the third column; and the
frequency of absolute aggregation success (ALI = 1) in the fourth column. Panel B presents, on average by network
structure, a scatter plot showing the share of correct final guesses as a function of the percentage of correct private
signals, grouped by signal quality: weak, average, and strong (as defined in Section 5.1). The legend is placed in the
right-most column of Panel A.

network, and the One Gatekeeper network. Each has a single node connected to all others; we label
these Single Aggregator networks. Although the One Gatekeeper network features both a central
node and a size-9 clique, it is clearly insensitive to the distribution of initial signals, behaving like
the other Single Aggregator networks rather than the Cluster(s) networks.

Given the stark differences between the two groups, and consistent with our focus on network
architectural features’ effects on information aggregation, much of the analysis below pools data
from networks within each group. We compare the performance of Cluster(s) and Single Aggregator
groups against each other and against our benchmark, the Complete network.

Figure 2 also shows that absolute aggregation success (ALI = 1) is rarely achieved in practice.
Moreover, aggregation failures are fairly common. We define a complete failure of information
aggregation as a case in which a majority of participants make incorrect guesses in the final round.
A relative failure of information aggregation occurs when the final-round ALI is negative. Relative
failure is a necessary but not sufficient condition for complete failure. Panel A in Figure 3 reports
the frequency of both types of failures, as well as absolute success, for each network.31 Consistent

31Mueller-Frank and Neri (2015) report an absolute aggregation rate of 70% for a complete network of size 5, and
46.5% for a star network of the same size. Grimm and Mengel (2020) find 27% absolute aggregation in networks of
size 7 that the myopic Bayesian model predicts will reach consensus on the correct state. Figure 3c in Choi et al.
(2023) shows a 26% relative failure rate and no instance of absolute aggregation in networks of size 40.
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Figure 4: Evolution of ALI as the Game Progresses

Notes: The figure presents the average ALI per round, across network groups and signal quality. For readability, we
present the 95% confidence intervals only for the network group that most differs from the others, using clustered
standard errors at the session level. The reported p-values use these clustered standard errors to evaluate the null
hypotheses that the most different group’s mean ALI differs from the other groups’ ALIs in round 20. For ease of
interpretation, these p-values are not adjusted for multiple comparisons. A simple Bonferroni correction would just
multiply the smallest of the p-values in each panel by a factor of two. As there are no noticeable movements beyond
round 20, the horizontal lines end there. See Section C.5 of the Empirical Appendix for robustness analysis.

with our observations above, panel A highlights two patterns. First, while relative or complete
information aggregation failures occur almost never in the Complete network, these failures do
occur in significant proportions in both Single Aggregator and Cluster(s) networks. Second, absolute
aggregation of information is rare in all networks, including the Complete one. Panel B in Figure
3 presents a scatter plot showing the average share of correct final guesses as a function of the
percentage of correct private signals, grouped by network structure and signal quality. Panel B of
Figure 3 and Figure 2 further illustrate that Cluster(s) networks frequently fail when initial signals
are weak, whereas Single-Aggregator networks perform relatively poorly in cases with strong initial
signals, compared to other network structures.

5.4 Dynamics

Figure 4 illustrates how ALI evolves over rounds, separately for games with weak, average, and
strong initial signals. When signals are not weak, the Complete network reaches an ALI of about 0.5
as early as round 2, and when signals are weak, it still attains an ALI of roughly 0.3 by that point. In
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both cases, performance improves modestly in subsequent rounds. The Cluster(s) networks perform
poorly under weak signals but improve substantially as signal quality increases, eventually matching
the Complete network when signals are strong. By contrast, the Single Aggregator networks perform
comparably to the Complete network when signals are weak but fail to improve as signal quality
rises (see also Section C.6 of the Empirical Appendix).

Another key insight from Figure 4 is that the first three rounds largely determine the aggregate
outcome. ALI stabilizes early, with minimal change after round 3 (see Grimm and Mengel (2020)
and Choi et al. (2023) for similar observations). This motivates us to focus the positional-level
analysis on behavior during the first three rounds.32

5.5 Summary of Long-run Outcomes

First and foremost, our analysis establishes that network structure has a profound effect on long-run
outcomes, and that this effect depends critically on the quality of initial information. In particular:

Finding 1. The Complete network aggregates information better than all other networks, but not
perfectly.

Finding 2. Single Aggregator networks perform on par with the Complete network when initial
information is poor, but fail to improve as information quality increases. As a result, they frequently
fail to aggregate information even when the vast majority of signals are correct.

Finding 3. Cluster(s) networks respond positively to signal quality and match the Complete network’s
performance when initial signals are strong. However, when signals are weak, they often fail to
aggregate information.

Finding 4. Behavior in the first three rounds is decisive for determining network outcomes.

5.6 The Myopic Bayesian and Naïve Models: Evaluation of Aggregate Predictions

The Myopic Bayesian model predicts perfect information aggregation across almost all combinations
of network structures and signal distributions. The few exceptions—discussed in Section 4.4 are
referred to as structural frictions in which myopic Bayesian agents are expected to fail. In contrast,
the aggregate experimental results, summarized in Findings 1, 2 and 3 reveal that networks achieve
substantially weaker aggregate performance than predicted by the Myopic Bayesian model.

As discussed in Section 4.4, the network-level predictions of the naïve model differ markedly
from those of the Myopic Bayesian model. In particular, the naïve model rarely predicts complete
information aggregation, as leaves and small cohesive subgroups often fail to learn the true state
under naïve updating. An exception is the Complete network, where both models predict rapid and
complete aggregation. Yet subjects’ actual performance falls short of this benchmark, both in the

32Chandrasekhar et al. (2020) also restrict their individual-level analysis to the first three periods. Their justification
differs from ours: “from period 4 onward, most networks enter a zero-probability information set—that is, at least one
agent observes behavior that cannot be reconciled with either Bayesian or Naïve reasoning” (p. 23).
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accuracy of their final choices (Finding 1) and in the observed dynamics (Figure 4).
Because the naïve model often yields indeterminate predictions in incomplete networks, it is

hard to evaluate its performance, directly. Instead, we test a key feature of its behavior: that
clique members with limited external connections should converge early and never revise their guess.
This prediction, formalized in Proposition 2, states that such agents should adopt the round-1
local majority from period 2 onward and stick to it. To test this implication in its most obvious
form, we focus on clique members with no links outside their clique. Specifically, we examine four
groups of such positions: (i) non-aggregators in the Connected Spokes network, (ii) non-aggregator
clique members in the One Gatekeeper network, (iii) non-connectors in the Two Cores with One
Link network, and (iv) non-connectors in the Two Cores with Three Links network. For each case
(excluding ties), we compute the local majority after round 1 and check whether the subject followed
it consistently thereafter. In total, we identify 2,312 relevant instances. Overall, subjects adhered
to Proposition 2 in 80.8% of these cases. Adherence, however, depended sharply on whether the
subject was in the majority or in the minority after round-1 guesses were revealed. Subjects in the
majority—who, according to Proposition 2, were not required to switch—followed its prediction
96.0% of the time. In contrast, subjects in the minority—who were required to switch—followed
its prediction only 50.1% of the time.33 We interpret this pattern as evidence of poor predictive
performance of the naïve model: the prediction in Proposition 2 is independent of the initial
distribution of private signals, yet behavior varies dramatically with whether a subject’s round-1
guess places her in the majority or the minority. In Section 8.3, we provide evidence that increasing
the weight on one’s own signal in the naïve updating rule is not sufficient for the model to be
consistent with the data. Taken together—the fact that a clear implication of the naïve model
is violated, and the surprisingly poor performance in the Complete network—we conclude that
relying solely on local neighborhood information does not provide an adequate explanation for the
aggregate behavior observed in the experiment.

6 Positional Analysis

In this section, we examine individual behavior by position in the network. Following Finding 4, we
focus on the first three rounds. Our benchmarks are the behaviors predicted by the Bayesian and
the naïve models described in Section 4. In Section 8.3 we address various variants of these models
and discuss their fit with the behavior reported in this section. We find that none of them conform
to the behavior observed in the experiment.

Throughout this section, we employ regression analysis to examine heterogeneity in participants’
behavior as a function of their local information environment. To account for differences in aggregate
information distributions and network structures, we include session-game fixed effects. Standard
errors are clustered at the individual level to account for within-subject correlation across games. The

33Adherence when part of the majority was homogeneous across relevant network positions (94.5%-97.4%). Adher-
ence when part of the minority was highest among non-connectors in the Two Cores with One Link (55.7%) network,
and lowest among non-aggregators in the One Gatekeeper (31.4%) network.
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Single Aggregator networks Cluster(s) networks
Complete Star Connected One Core Two Cores Two Cores

Spokes Gatekeeper Periphery One Link Three Links
All nodes 92% 93% 92% 91% 94% 92% 91%
Aggregators 91% 94% 94%
Cluster members 92% 92% 90% 94% 92% 92%
Leafs 93% 92% 95%
Connectors 90% 88%

Table 3: First-round guesses, by network and position
Notes: Frequency of “correct” first-round guess is reported, where correct indicates a guess coinciding with one’s private signal.
Aggregators are the unique nodes in the network that are connected to all other nodes. Cluster members are members of a
clique of size at least 3 that are not connected to nodes outside the clique. Leafs are nodes with a single link. Connectors
are the nodes in the two cores networks that maintain cross-clique links (see Tables 12 and 14 in Section E.1 of the Empirical
Appendix for counts and a detailed classification, respectively).

clustering and control strategy is informed by the regression analysis of learning indices presented
in Empirical Appendix D. To the extent that there was any flexibility in defining key variables or
applying alternative treatments, Appendix E presents extensive tests establishing the robustness of
our results.

6.1 First Round Guesses

Both the Bayesian model and the naïve model predict that the first guess should reveal one’s private
signal since it is correct with probability 70% conditional on the state (Lemma 1 and Definition 1).
Moreover, we believe that reporting one’s own signal indicates a basic understanding of the game
and its reward scheme. First-round guesses match their signals in 92.2% of the cases.34 Table 3
reports these rates by network and by position. Importantly, there is little variation in the tendency
to report one’s own signal in the first round of a game across network structures and network
positions.35

Across ten games within a session, 72.5% of participants report their signal as their first guess
in all ten games and 91.2% misreport at most twice. More than 40% of the misreports (210 out
of 510) were made by subjects who misreport at most twice. In addition, 45.2% of subjects who
misreported at least three times in the first round are classified as probability matchers (see Section
A.4 of the Empirical Appendix). This suggests that most misreports reflect random “trembling
hand” errors or mistakes rather than strategic considerations.36 See Section E.1 of the Empirical

34Choi et al. (2005) report a first-round mistake rate of 5.8% in networks of size 3. Mueller-Frank and Neri (2015)
report rates of 3% and 6% in their 2-urn treatments with 5 and 7 agents, respectively. Jiang et al. (2023) report a
first-round mistake rate of 1.7% in networks of size 7.

35The Symmetric Core Periphery Network sessions had participants’ first-round reports match their signals in 94%
of cases, a small difference that proves to be statistically significant even after clustering and multiple-comparison
adjustments. None of the other network types showed pairwise differences that were statistically significant. Further,
there were no statistically significant differences in the frequency with which the first guess matched a subject’s signal
by its position in the network.

36At the group level, in 94.2% of games with an initial signal imbalance that converged, misreports did not alter
the majority signal. The 21 cases in which first-round misreports reverse the majority signal account for only 18.6% of
the relative failures and 23.7% of the complete failures of information aggregation documented in Panel A of Figure 3.
This suggests that misreports in the first round cannot explain the bulk of failures of information aggregation.
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Benchmark Single Aggregator networks Cluster(s) networks
Complete Star Connected One Gatekeeper Symmetric Core Two Cores Two Cores

Spokes Periphery One Link Three Links
Overall 87% 79% 88% 77% 87% 84% 82%

maj min maj min maj min maj min maj min maj min maj min
All nodes 98% 62% 97% 48% 95% 54% 96% 35% 95% 58% 95% 57% 94% 54%
Single Aggregators 97% 48% 91% 61% 100% 59%
Cluster members 95% 53% 95% 31% 95% 58% 95% 56% 95% 52%
Connectors 97% 71% 90% 65%

Table 4: Second-round guesses, by network and position
Notes: The average frequency of “correct” guesses is reported for all nodes with two or more local friends. Columns “maj” and
“min” refer to cases in which a participant’s first round guess is part of round 1 local majority or minority, respectively. The
round 2 guess is considered “correct” if it matches the local round 1 majority taking into account the participant’s own round 1
guess. Leafs are excluded, as they err only if guessing against their signal when their neighbor’s guess matches it. In addition,
we exclude local ties, where a tie is also defined relative to one’s first round guess. Section E.2.1 of the Empirical Appendix
reports similar results under different definitions of the “correct” round 2 guess and minority status.

Appendix for further details on first round behavior.

Finding 5. Subjects tend to report their private signals in the first round of the game. Mistakes
are relatively rare and are not systematic across network structures or network positions.

6.2 Second Round Guesses

As we saw, most subjects truthfully report their private signal in the first round of a game, and those
who do not have no particular bias. Hence, the predicted second-round behavior, both for Bayesian
agents and for naïve agents, entails reporting the majority of first-round guesses one observes in her
local neighborhood augmented by their own signal (Lemma 3 and Definition 1). If there is an equal
number of guesses of each color, then the subject should be indifferent.37

Table 4 documents the frequency with which subjects guess “correctly” in round 2 conditional
on whether their first-round guess aligns with the majority of first-round guesses in their local
neighborhood. This analysis focuses on nodes with at least two local neighbors (i.e., excluding
leafs) and omits cases where local ties occur. Subjects whose first-round guess agrees with the local
majority in the first round make a correct guess in round 2 almost always (90% or more), regardless
of their network position. In contrast, when their first-round guess contradicts the first-round local
majority, the probability of a correct guess in round 2 varies substantially across network structures,
ranging from 31% for cluster members in the One Gatekeeper network to 71% for connectors in the
Two Cores with One Link network.38

37Our theoretical analysis does not impose a tie-breaking rule. In the experiment, ties occurred in 1,287 second-round
decisions (17.4%), with about 75% involving leaf nodes. In 75.37% of tie cases, subjects repeated their first-round
guess. This fraction is similar if we instead measure tie-breaking relative to the subject’s initial signal rather than
their first-round guess (74.27%).

38In their full information treatment Choi et al. (2005) find that subjects in the complete network were incorrect in
round 2 in 13% of cases, while aggregators in the star network were incorrect in 11.1% of cases. Choi et al. (2023)
report that approximately 20% of subjects switched their guesses between the first and second rounds. In addition,
their Table EC.4 reveals that 10%-12% of the subjects were incorrect in at least one of the first two rounds. Neither
study considers whether a subject was in the majority or minority at the end of round 1.
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Dependent Variable: Correct Round 2 Guess
All Non-Leaf Nodes

Baseline First Order Interaction Interactions
Model Model Model with Controls

Constant 0.948*** 0.953*** 0.942*** 0.923***
(0.00499) (0.0269) (0.0274) (0.0322)

Minority Characteristics
In R1 Minority -0.396*** -0.414*** -0.358*** -0.346***

(0.0190) (0.0200) (0.0475) (0.0468)
Local Minority Size -0.175*** -0.0416 -0.0331

(0.0495) (0.0465) (0.0459)
In R1 Minority -0.820*** -0.819***
× Local Minority Size (0.127) (0.126)

Node Characteristics
Node Degree Centrality 0.0935* 0.0401 0.0310

(0.0488) (0.0498) (0.0493)
Node Degree Centrality 0.278*** 0.288***
× In R1 Minority (0.0762) (0.0747)

Incorrect Round 1 Guess -0.120***
(0.0305)

R-squared 0.243 0.245 0.262 0.275
# of Observations 4,310 4,310 4,310 4,310
# of Clusters 756 756 756 756
# of Session-Game Fixed Effects 359 359 359 359
* p<0.05, ** p<0.01, *** p<0.001. Standard errors in parentheses

Table 5: Determinants of Second-Round Guesses
Notes: These are linear regressions with clustering at the participant level including session-game fixed effects. The sample
includes only nodes with two or more neighbores and excludes local ties. In R1 Minority is an indicator that equals one when
R1 guess was not the most popular in one’s local neighborhood in the first round. Local Minority Size is the percentage of
the local minority in the neighborhood. Node degree centrality is calculated as the number of neighbors divided by the largest
number of neighbors one can have in our networks (17). Incorrect Round 1 Guess is the indicator of sub-optimal first round
guess. Individual controls in the rightmost column include also the risk attitude measure, the probability-matching measure,
and gender. Section E.2.2 of the Empirical Appendix presents robustness checks for different regression model specifications.

This behavior is consistent with the well-known behavioral bias known as under-reaction to new
information. In our setting, the new information consists of the first-round guesses of a subject’s
direct neighbors, which become observable only at the end of round 1. The under-reaction bias
manifests when subjects recognize that the majority of their direct neighbors received a signal
different from their own—based on their round 1 reports—but nonetheless fail to switch to the
majority signal as frequently as would be expected.39

Table 5 uses a linear probability model to analyze under-reaction in round 2 as a function of
local environment and network position. The dependent variable equals 1 if the round 2 guess
matches the local round 1 majority; the key regressor indicates whether the individual was in the
round 1 minority. Additional controls capture the extent of local consensus in round 1, network
position, and individual characteristics.

39An extreme form of Under-Reaction to New Information is to adhere to one’s initial private signal throughout
the game—a behavior often labeled “stubbornness” in the social learning literature. Choi et al. (2023) report in their
supplementary material that 25%–30% of their subjects exhibit such behavior. In our data, the rate of stubbornness
ranges from 3% to 16%.
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The first regression shows that being in the local majority in round 1 is associated with a 94.8%
probability of making a correct guess in round 2. Belonging to the minority reduces this probability
by approximately 40 percentage points, across networks and positions. The other regressions add
two insights. First, for minority members, minority size is negatively correlated with correctness:
large minorities double the adverse effect (minority size ranges from 0 to 4

9). Second, the negative
impact of being in the minority is partially mitigated by large neighborhood size. That is, more
connections help minority members better incorporate new information. See Section E.2 of the
Empirical Appendix for further details on second round behavior.

Finding 6. Across networks and positions, participants imperfectly aggregate local information in
round 2, systematically under-reacting to neighbors’ first-round guesses when in the local minority.
The extent of under-reaction depends on the strength of the observed evidence, determined by
neighborhood size and majority-minority composition of their local neighborhood.40

6.3 Third Round Guesses

The third round is the first stage at which subjects can incorporate information from network
members to whom they are not directly connected. In the naïve model, this occurs mechanically:
third-round guesses reflect the second-round guesses of direct neighbors, which were themselves
shaped by the first-round guesses of more distant agents. In the Bayesian model, players should
begin to exploit the network structure through sophisticated inference to refine their guesses. In
practice, as documented in Finding 4, most information aggregation is completed by the end of the
third round, making it a particularly important stage to analyze.

In Section 4.2, we introduced the heuristic termed imitation: agent i imitates agent j if
∀t > 2 : at

i = at−1
j . Proposition 1 identifies network positions where Bayesian agents should

optimally imitate a neighbor—specifically, the unique neighbor j who is strictly better informed than
agent i and all i’s other neighbors (the Influencer). Section 4.4 applies this result to the networks
we study.41 In the following, we use this characterization to study the empirical determinants of
imitation.

Table 6 reports how often subjects’ behavior aligns with imitation of the influencer in cases

40Under-reaction to new information is one of the more stable and well-documented empirical deviations from
Bayesian predictions (see the surveys by Benjamin (2019), Enke (2024) and Section 6.2.1 in Bikhchandani et al.
(2024)). Conlon et al. (2022) find that subjects who exert effort to uncover information overweight their private signals
relative to their partner’s, which they interpret as an ownership effect. Esponda et al. (2023) show that subjects
overweight private signals relative to group-level information. Augenblick et al. (2025) use the cognitive imprecision
model of Woodford (2020) and find under-reaction with precise signals and over-reaction with weak signals. Ba et al.
(2024, 2025) combine noisy cognition and representativeness, predicting under-reaction when the state space is simple,
signals precise, and priors flat, and over-reaction when the environment is more complex, signals noisier, and priors
more concentrated. The environment in our experiment aligns with conditions predicted to generate under-reaction in
both Augenblick et al. (2025) and Ba et al. (2024, 2025) models.

41In Single Aggregator networks, all non-aggregators should imitate the aggregator. In the Symmetric Core Periphery
network, each leaf should imitate its core neighbor. In the Two Cores with One Link network, non-connectors should
imitate their connector. Finally, in the Two Cores with Three Links network, non-connectors in the core with a single
connector should imitate that connector, and those in the core with three connectors should imitate whenever the
connectors’ prior-round guesses are unanimous.
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Single Aggregator networks Cluster(s) networks
Star Connected One Symmetric Core Two Cores Two Cores

Spokes Gatekeeper Periphery One Link Three Links
same diff same diff same diff same diff same diff same diff

Leafs 94% 46% 96% 43% 97% 60%
Cluster members 97% 36% 95% 29% 97% 21% 96% 25%

Table 6: Third-round imitation frequencies, by position and agreement with the influencer in R2.
Notes: We report how often a leaf’s or cluster member’s round 3 guess matches their influential friend’s round 2 guess in cases
where imitation is optimal. We distinguish between cases where their own round 2 guess agrees with the influential neighbor’s
(column “same”) and where it differs (column “diff”).

where Bayesian agents should optimally imitate. When players agreed with the influencer in round
2, they typically maintained the same guess in round 3 (94%–97% across networks). However, when
subjects disagreed with the influencer in the second round, they frequently persisted with their
round 2 guess rather than switching. We refer to this pattern as under-imitation.42

Table 7 analyzes the determinants of third-round imitation, incorporating subjects’ type, their
agreement with the influencer in round 2, the influencer’s behavioral change between rounds 1 and
2, and features of the local environment. Regressions (4)-(6) examine imitation behavior separately
by position: leafs, cluster members in Single Aggregator networks, and cluster members in Cluster(s)
networks. Regressions (1)-(3) pool all positions to exploit variation in the ratio of the subject’s local
neighborhood size to that of the influencer—a variable omitted from the position-specific regressions
due to limited within-group variation.

The regressions in Table 7 yield several notable findings. Throughout the analysis we focus on sub-
jects who, under the Bayesian model, are expected to imitate their influential neighbor—specifically,
those who are not probability matchers and that guessed correctly in round 1. First, by regression
(1), when these subjects agree with the influencer in round 2, they maintain their guess in 92.8% of
cases, consistent with imitation. However, when imitation requires switching—i.e., when their round
2 guess differs from the influencer’s—imitation drops sharply to 33.7% (assuming the influencer
submitted the same guess in round 1 and round 2). We identify three main factors that shape the
extent of this drop: (i) the behavior of the local neighborhood, (ii) the behavior of the influencer,
and (iii) structural features relative to the influencer’s network position. Additional results and
robustness checks are reported in Section E.3 of the Empirical Appendix.

The Local Neighborhood Regressions (5) and (6) reveal how the behavior of the local neigh-
borhood affects imitation. Consider the case where the influencer does not switch between rounds 1
and 2. When non-influencers agree with the influencer, and thus do not need to switch, imitation
rates are well over 96% when the subject is in the local majority in round 2. These rates drop
slightly to about 90% when in the local minority. The role of the local environment becomes more
pronounced when the subject disagrees with the influencer. In this case, imitation is infrequent when

42This behavior is consistent with findings from sequential social learning experiments, where subjects tend to
under-imitate predecessors when doing so requires acting against their private signal (Weizsäcker (2010); Ziegelmeyer
et al. (2013)).
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Dependent Variable
Round 3 guess matches round 2 guess of the influencer

Regression Number (1) (2) (3) (4) (5) (6)
Network Type All Networks All Networks Single Aggregators Cluster(s)
Node Types Included leafs leafs leafs leafs

clusters clusters clusters clusters clusters
Constant 0.928*** 0.931*** 0.943*** 0.882*** 0.981*** 0.964***

(0.0186) (0.0187) (0.0257) (0.0327) (0.0302) (0.0257)
Incorrect R1 Guess -0.105*** -0.105*** -0.106*** -0.129*** -0.0453 -0.133***

(0.0188) (0.0188) (0.0189) (0.0312) (0.0314) (0.0333)
Influencer Round 2 Status
Disagree with Influencer -0.591*** -0.588*** -0.511*** -0.478*** -0.730*** -0.824***

(0.0194) (0.0223) (0.0296) (0.0310) (0.0371) (0.0311)
Influencer Switch R1 to R2 -0.000420 -0.00696 -0.0483** -0.0265 -0.0487** 0.00900

(0.0104) (0.0110) (0.0188) (0.0208) (0.0194) (0.0141)
Disagree with Influencer 0.0819*** 0.0675** 0.160*** 0.111** 0.166*** -0.0840*
× Influencer Switch (0.0308) (0.0326) (0.0458) (0.0493) (0.0558) (0.0473)

Minority Status
In R2 Minority -0.0402* -0.0440* -0.0764*** -0.0663

(0.0237) (0.0234) (0.0286) (0.0406)
In R2 Minority 0.0196 0.106*** 0.141*** 0.271***
× Disagree with Influencer (0.0362) (0.0361) (0.0497) (0.0636)
In R2 Minority 0.0718* 0.122*** 0.117** 0.0639
× Influencer Switch (0.0411) (0.0398) (0.0522) (0.0772)

Network Features
Ratio -0.0465

(0.0491)
Ratio × Influencer Switch 0.0731**

(0.0289)
Ratio -0.317***
× Disagree with Influencer (0.0519)
Ratio × Influencer Switch -0.314***
× Disagree with Influencer (0.0902)

R-squared 0.432 0.433 0.451 0.322 0.500 0.623
# of Observations 4,521 4,521 4,521 1,933 1,292 1,296
# of Clusters 721 721 721 360 244 237
# of Session FEs 36 36 36 18 12 12

Table 7: Determinants of third-round imitation
Notes: All regressions are linear, with standard errors clustered at the participant level and session fixed effects included. Regs
(1)-(3) use a pooled sample of all non-aggregators in the Single Aggregator networks, leafs in the Symmetric Core–Periphery
network, and non-connectors in the Two Cores networks. Reg (4) includes leafs in the Star, One Gatekeeper, and Symmetric
Core–Periphery networks. Reg (5) includes cluster members in the Connected Spokes and One Gatekeeper networks. Reg (6)
includes non-connectors in the Two Cores networks. Disagree with influencer is an indicator for whether the subject’s round
2 guess differs from their influencer’s round 2 guess. Influencer switch indicates whether the influencer changed their guess
between rounds 1 and 2. In R2 minority indicates whether the subject’s round 2 guess was not the local majority in their
neighborhood. Ratio is defined as the number of the subject’s direct neighbors divided by the number of the influencer’s direct
neighbors. Incorrect R1 Guess is the indicator of sub-optimal first round guess. Individual controls (omitted from the table)
include the risk attitude measure, the probability-matching measure, and gender.

the subject is in the local majority—just 25% in Single Aggregator networks and 14% in Cluster(s)
networks. However, when the subject is in the local minority—i.e., most of their neighbors agree
with the influencer—imitation rates improve. This improvement accounts for 6.5 percentage points
of under-imitation in Single Aggregator networks and at least 20.5 percentage points in Cluster(s)
networks. That is, when subjects are in the local minority and agree with the influencer, they
rarely switch to match the local majority. But when they disagree with the influencer, being in
the local minority increases switching rates, especially among non-connectors in the Cluster(s)
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networks. Notably, the high rates of under-imitation among those who disagree with the influencer
are inconsistent with the Bayesian model, while the frequent refusal to conform to the local majority
among those who agree with the influencer stands in sharp contrast to the naïve model.43

The Influencer Both the Bayesian and naïve models predict that once the influencer’s second-
round guess is known, their first-round guess should be irrelevant for determining the subject’s
third-round decision. However, regression (4) shows that leaf subjects who disagree with the
influencer are 11.1 percentage points more likely to imitate when they observe that the influencer
switched between rounds 1 and 2—accounting for 23.2% of the under-imitation effect. Regression (5)
reveals a similar pattern among cluster members in Single Aggregator networks: when they disagree
with the influencer, observing a switch increases imitation rates by 11.7 percentage points when
they are in the local majority and by 23.4 percentage points when they are in the local minority.

The Influencer’s Relative Network Position To assess the effect of the influencer’s position
on imitation, regression (3) includes the variable Ratio, defined as the size of the subject’s local
neighborhood divided by that of the influencer (i.e., the subject’s degree centrality divided by
the influencer’s degree centrality). This measure ranges from 1

17 for leafs in Single Aggregator
networks to 8

9 for non-connectors in the Two Cores with One Link network. The results show that
when subjects disagree with the influencer, imitation rates decline as the influencer’s informational
advantage diminishes—that is, as Ratio increases. In addition, regression (3) indicates that observing
the influencer switch promotes imitation among subjects who are much less connected than the
influencer, but reduces imitation among subjects with similarly sized local neighborhoods.

Finding 7. Participants tend to imitate neighbors with superior information, but do so far less
frequently than optimal when their second-round guess differs from that of the influencer. Two
cues appear to improve imitation rates: agreement between the influencer and the subject’s local
majority and switching by the influencer between rounds 1 and 2 when the influencer holds a clear
informational advantage.

Under-Imitation vs. Under-Reaction to New Information Although both under-imitation
and under-reaction to new information involve a failure to switch, they are conceptually distinct.
Imitation requires a more sophisticated understanding of the network: to decide whether to imitate
a neighbor, a subject must consider not only the neighbor’s action but also their position in the
network, including the connectivity of their neighbors. In contrast, reacting to new information
depends solely on the agent’s immediate environment. The two behaviors also differ in cognitive
demands: imitation involves mechanically copying a neighbor’s previous guess (in every period),

43Consider third-round decisions by subjects in non-leaf positions who followed both models in the first two rounds
and for whom both models yield clear third-round predictions (462 observations). A direct, uncontrolled comparison
shows that when both models predict no switch, only 1.8% of subjects switch. When the naïve model predicts a
switch but the Bayesian model does not, 5.1% switch. In contrast, when the Bayesian model predicts a switch and the
naïve model does not, 32.8% switch. Even when both models predict switching, only 42.1% of subjects switch.
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while responding to new information typically requires a one time computation, such as counting.
More broadly, learning can be motivated either by a desire to access others’ private signals or by the
belief that someone else is better equipped to interpret the environment (see Amelio (2024)). Under-
reaction reflects a failure of the former—insufficient use of others’ private information—whereas
under-imitation reflects a failure of the latter, namely an inability to recognize when a neighbor is
better informed about the state of the world. Finally, Table 6 and Finding 6 highlight a key empirical
distinction between these two frictions: while under-reaction to new information weakens as local
neighborhood size increases, under-imitation appears to intensify in larger local neighborhoods.

Is Under-Imitation Rational? We conclude the analysis of third-round behavior with a discus-
sion of the hypothesis that under-imitation is an optimal response to agents’ under-reaction to new
information. Consider a Single Aggregator network with n participants.44 Assume that (i) n is even
; (ii) every non-aggregator i has at most n

2 − 1 direct neighbors, i.e., b(i) < n
2 , and (iii) every two

non-aggregators i and j are either not linked, i.e., ij /∈ E, or they share exactly the same set of
neighbors, that is, B(i)\{j} = B(j)\{i}. Note that the Star, the Connected Spokes and the One
Gatekeeper networks satisfy these properties. Property (i) introduces ties, property (ii) guarantees
non-aggregators never know the majority of private signals for sure already after the first round
and property (iii) guarantees that the second round guesses of non-aggregators add no information
to their neighbors. Following Findings 5 and 6 and Footnote 37, assume, in addition, that (iv) all
subjects guess correctly in the first round, (v) the aggregator, denoted by A, never switches in the
second round when her private signal coincides with the majority of first round guesses, (vi) A does
not switch in the second round when her private signal coincides with the minority of first round
guesses with probability α ∈ (0, 1], and (vii) A does not switch in the second round when there is a
tie in the first round guesses with probability β ∈ [0, 1].

Whenever the aggregator switches between round 1 and round 2, their second round guess is
surely correct, therefore, in these cases, imitation is optimal. If the aggregator does not switch
it might be that her private signal coincides with the majority of first round guesses or there
is a tie (and then imitation is optimal) or, alternatively, that her private signal coincides with
the minority of first round guesses and she decided not to switch (due to under-reaction to new
information concerns). When no switch is observed, a Bayesian non-aggregator agent i uses the
b(i) + 1 first round guesses she observed and the fact that the aggregator did not switch, to evaluate
the conditional probability that the aggregator’s second round guess is incorrect. Claim 1 shows
that doubts about imitation should emerge only if the aggregator was within agent i’s local minority
in the first round. The claim’s proof is relegated to Section D.1 of the Theoretical Appendix.

Claim 1. A Bayesian non-aggregator agent i imitates agent A if either (i) the aggregator switched
between round 1 and round 2, i.e., a1

A 6= a2
A, or (ii) the aggregator did not switch, and their initial

guess was not in the first-round minority within agent i’s local neighborhood, i.e., a1
A = a2

A and

44We focus here on Single Aggregator networks since the Complete network is not expected to exhibit imitation
and the Cluster(s) networks suffer from structural frictions that may over complicate the discussion (see Section 6.5).
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|{j ∈ B(i) ∪ {i}|s(j) = s(A)}| ≥ |{j ∈ B(i) ∪ {i}|s(j) 6= s(A)}|. If the aggregator did not switch
between round 1 and round 2 and their initial guess was in the first-round minority within agent i’s
local neighborhood, then there exist values of α and β for which imitation is not optimal for agent i.

Clearly, the aggregator can never be in the local minority of a leaf, so leaf agents should always
imitate. Thus, the star network should not exhibit any under-imitation. In Section D.2 of the
Theoretical Appendix, we compute the minimal values of α that make imitation suboptimal in the
Connected Spokes and One Gatekeeper networks. These values depend on the non-aggregator’s
position, the size of the local minority, and β. Using the empirical values of α and β,45 we find
that imitation is always optimal in the Connected Spokes network. In the One Gatekeeper network,
imitation is optimal when at least two non-aggregators in the clique guessed like the aggregator
in round 1. Therefore, under the empirical values of α and β, the only case in which imitation is
not optimal for Bayesian non-aggregators in single aggregator networks is when all of the following
hold: the agent is a clique member in the One Gatekeeper network, the aggregator does not
revise their guess between rounds 1 and 2, and at most one other clique member guessed similarly
to the aggregator in round 1. Hence, the theoretical prediction implies extremely low rates of
under-imitation—yet observed rates in the laboratory are substantially higher. We conclude that
under-imitation cannot be explained as a rational response to under-reaction to new information.

Summary of third-round behavior In conclusion, third-round behavior among potential
imitators departs from the predictions of both the Myopic Bayesian and naïve models. The Bayesian
model is challenged by the low imitation rates observed when the subject and the influencer
disagreed in round 2, while the naïve model fails to account for the limited tendency to switch
toward the round-2 local majority. We argue that under-imitation reflects excessive concern that
the influencer may have under-reacted to new information. Disagreement in round 2 appears to
trigger a reassessment of the influencer’s credibility. The evidence suggests that two factors serve as
credibility cues: (i) agreement between the influencer and the subject’s local majority, and (ii) the
influencer’s switching between rounds 1 and 2 signals responsiveness to new information, particularly
for subjects in positions that suffer substantial relative informational disadvantage. Together, these
cues increase imitation rates by roughly 30 percentage points in Single Aggregator networks and
nearly 20 percentage points in Cluster(s) networks.

6.4 Guesses Beyond the Third Round

Finding 4 highlights that behavior in the first three rounds largely determines network outcomes,
with ALI rates stabilizing from round 4 onward. In practice, 41% of subjects never switched after
round 4, and 84% switched in at most two games. The positional analysis in Panel A of Table 27

45In the data, α = 43.5% for the Connected Spokes network and α = 45% for the One Gatekeeper network.
β = 75% for the Connected Spokes network. Since we observe no single aggregators facing ties after the first round in
the One Gatekeeper network, we set here β = 75% as well (also consistent with Footnote 37).
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Figure 5: Structural Failures

Notes: The figures on the left plot end-game ALIs in the Symmetric Core Periphery and One Gatekeeper networks as
a function of the number of correct signals in the core. The figures on the right plot end-game ALIs in the Two Cores
with One and Three Links networks as a function of the alignment of majority signals across the two cliques.

(Section E.4 of the Empirical Appendix) reveals that, for most positions, no switches occur after
round 3 in at least 80% of cases—the exceptions being positions affected by structural frictions.

6.5 Structural Frictions

In Section 4 we defined an unavoidable structural friction as a combination of network structure
and signals’ distribution in which information aggregation fails even under common knowledge that
all agents are myopically Bayesian. We also introduced the notion of a cognitive structural friction:
a case in which aggregation is theoretically possible under these same assumptions but requires
unusually sophisticated reasoning. In Section 4.4 we showed that in Cluster(s) networks, both types
of frictions may appear, depending on the distribution of signals. We next examine the extent to
which these structural frictions are observed in our data.46

One Gatekeeper vs. Symmetric Core Periphery Both networks feature a completely con-
nected core and a periphery in which each node connects to a single core member. The only

46Grimm and Mengel (2020) study one case of unavoidable structural friction (Kite 1) and two cases of cognitive
structural frictions (Circle 2 and Kite 2).
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structural difference lies in the periphery’s pattern of connections: in the Symmetric Core Periphery
network, each peripheral node connects to a different core member; in the One Gatekeeper network,
all peripheral nodes connect to the same core member—the “Gatekeeper.” The myopic Bayesian
model predicts no structural failures for the One Gatekeeper network but identifies potential frictions
in the Symmetric Core Periphery network when the core’s majority is either narrow or incorrect
(see Section 4.4). Panel A of Figure 5 shows that average ALI in the One Gatekeeper network
is largely insensitive to the signal distribution in the core. In contrast, aggregate failures—both
relative and absolute—in the Symmetric Core Periphery network arise almost exclusively when
the core’s majority is either narrow or incorrect. Consequently, the average ALI in this network
increases with the number of correct signals held by the subjects positioned in the core.

The Two Cores Networks In the Two Cores networks, the Bayesian model predicts that
aggregation is straightforward when both cliques have the same majority signal, although errors
can still occur with low probability. However, when the majority signals in the two cliques conflict,
aggregation becomes extremely difficult: success may require multiple iterations of complex inference
by the connectors, without switching (see Section 4.4). Panel B of Figure 5 confirms that aggregation
often fails when the two cliques’ majority signals are misaligned, especially for the Two Cores with
One Link network.

6.6 Final Round Guesses

Table 8 reports regression results on the determinants of correct final-round guesses, analyzed by
network position. Recall that the final round was determined endogenously and was not distinctively
incentivized.

Across all positions, early-round mistakes emerge as a consistent and powerful predictor of
incorrect final guesses: misreporting the private signal in round 1 (for non-influencers in incomplete
networks), mis-aggregating local information in round 2 (for non-leaf positions), or failing to imitate
optimally in round 3 (for potential imitators). These long-lasting negative effects highlight the central
role of behavioral frictions—specifically, under-reaction to new information and under-imitation—in
shaping individual decisions.

As discussed in Section 6.4, late-round switching was relatively rare. Nevertheless, for participants
who made early mistakes, late switches partially mitigated the damage—recovering between 55%
and 80% of the initial loss. By contrast, for those who made no early error, late switches tended to
reduce the likelihood of a correct final guess. Three additional insights emerge from the final guess
analysis.

Single Aggregators are Insensitive to Signals’ Quality Regressions (1) and (2) offer an
illuminating comparison between the participants in the Complete network and the aggregators
in the Single Aggregator networks, echoing patterns seen in Figure 2. In Regression (1), a larger
local minority size in round 1 significantly reduces the probability of a correct final guess in the
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Reg (1) Reg (2) Reg (3) Reg (4A) Reg (4B) Reg (5)
Leafs Only Leafs Only Clusters

Complete Aggregators Connectors Core Periphery All Others with Influencers
Constant 1.082*** 1.008*** 1.142*** 0.912*** 0.826*** 0.998***

(0.0399) (0.0854) (0.0807) (0.0557) (0.0320) (0.0257)
Initial Behavior
Wrong R1 Guess -0.0160 -0.111 -0.0422 -0.173*** -0.0952** -0.0847***

(0.0402) (0.0879) (0.0575) (0.0646) (0.0407) (0.0315)
Wrong R2 Guess -0.931*** -0.917*** -0.573*** -0.0335 -0.0215 -0.312***

(0.0284) (0.0607) (0.0967) (0.145) (0.0898) (0.0260)
Wrong R3 Guess -0.399*** -0.527*** -0.331***

(0.0780) (0.0384) (0.0288)
Late Switching Behavior
Switched in R3+ -0.0958* -0.294*** 0.0254

(0.0518) (0.0976) (0.0752)
Wrong R2 Guess 0.816*** 0.862*** 0.390**
× Switched in R3+ (0.0896) (0.182) (0.154)
Switched in R4+ -0.126** -0.0887*** -0.110***

(0.0638) (0.0337) (0.0301)
Wrong R3 Guess 0.354*** 0.475*** 0.294***
× Switched in R4+ (0.132) (0.0633) (0.0509)

Local Network Information
R1 Local Minority Size -0.340*** 0.118 -0.0962 -0.218***

(0.0918) (0.182) (0.135) (0.0483)
Core Connectors Disagree 0.00992

(0.0756)
Core Connectors Disagree -0.699**
× R1 Local Minority Size (0.278)
Core Connectors Disagree 0.00933
× Switched in R3+ (0.0943)

Influencer Switching
Influencer Switched in R3+ -0.105*** -0.0159 -0.0216

(0.0376) (0.0313) (0.0183)
Network Structure
Three-Connecting Node -0.0833**

(0.0405)
Connected Spoke Small Cluster -0.0457*

(0.0242)
R-squared 0.578 0.722 0.353 0.107 0.182 0.255
# of Observations 684 159 318 522 1,411 2,900
# of Clusters 106 128 165 119 241 484
# of Session FEs 5 18 12 6 12 24

Table 8: Determinants of Last Correct Guess
Notes: All regressions are linear, with standard errors clustered at the participant level and session-game fixed effects included.
Reg (1) uses data from the Complete network; (2) from aggregators in Single Aggregator networks; (3) from connectors in Two
Cores networks; (4A) from leafs in the Symmetric Core–Periphery network; (4B) from leafs in the Star and One Gatekeeper
networks; and (5) from non-connectors in Two Cores networks, non-aggregator cluster members in the One Gatekeeper network,
and non-aggregators in the Connected Spokes network. The dependent variable, Last Correct Guess, equals 1 if the participant
guessed correctly in the final round. Wrong Rx Guess equals 1 if the participant guessed not according to the myopic Bayesian
model in round x. Switched in Ry+ equals 1 if the participant switched at any round t ≥ y relative to round y − 1. R1 Local
Minority Size is the fraction of minority guesses in the participant’s local neighborhood in round 1. Core Connectors Disagree
equals 1 whenever there is no unanimity amongst the connectors in round 2 in the Two Cores networks. Influencer Switched in
R3+ equals 1 if the influencer switched at any round t ≥ 3 compared to round 2. Three-Connecting Node indicates whether the
participant is one of the three connectors in the Two Cores with Three Links network. Connected Spoke Small Cluster indicates
assignment to a small cluster in the Connected Spokes network. Individual controls (omitted from the table) include the risk
attitude measure, the probability-matching measure, and gender. Robustness checks appear in Section E.5 of the Empirical
Appendix. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Complete network. This effect is absent in Regression (2), despite both samples being limited to
participants who observe the full network. Given that most participants act on their private signals
in round 1 (see Finding 5), and that both the Complete network participants and the aggregators in
Single Aggregator networks observe all others, a larger R1 Local Minority Size implies lower initial
signal quality. Thus, while final guesses in the Complete network are sensitive to the quality of
initial signals, the final performance of aggregators in Single Aggregator networks appears unaffected.
This discrepancy is not accounted for by either the Bayesian or the naïve models and suggests the
influence of an unobserved factor—the connectivity of other agents—on the aggregation process.

Connectors do not Implement Sophisticated Reasoning Regression (3) provides two rele-
vant observations. First, when signal quality is poor—as indicated by a large R1 Local Minority
Size—connectors are significantly less likely to guess correctly in the final round when they disagree.
Second, in cases of round 2 disagreement, late switches by the connectors fail to improve their
accuracy. This suggests that such switching behavior is not driven by sophisticated Bayesian
reasoning and supports the classification of disagreeing connectors in Two Cores networks as cases
of cognitive structural frictions.

Larger Local Environments Improve Final Guesses Accuracy While most networks in the
experiment feature clusters of similar size, limiting our ability to study the role of local environment
size systematically, the Connected Spokes networks offer a useful exception. They include both
small clusters (three non-aggregators plus one aggregator) and large clusters (four non-aggregators
plus one aggregator). Regression (5) shows that non-aggregators in the smaller clusters are 4.57
percentage points less likely to guess correctly in the final round. We interpret this as anecdotal
evidence supporting the view that larger local environments facilitate more accurate final guesses.

Finding 8. Subjects rarely revise their guesses after the third round, making early under-reaction
to new information and under-imitation persistent frictions with lasting effects on performance.

7 Intervention: Mitigating the Behavioral Frictions

Our position-level analysis reveals that two behavioral frictions—under-reaction to new information
and under-imitation—significantly hinder participants’ ability to correctly identify the state of
the world. This section presents a follow-up experiment showing that reducing the amount of
information available to specific participants can partially mitigate both frictions.

7.1 Design

Learning in Single Aggregator networks relies on the aggregator’s ability to accurately aggregate
first-round signals and relay the result to others. Sections 5 and 6 show that these networks are
particularly prone to under-reaction to new information. To mitigate this friction, we implement
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a simple intervention: withholding the aggregator’s private signal to reduce the risk of early mis-
aggregation. All other participants receive partially informative signals and are explicitly informed
that the aggregator receives none. We assess the intervention’s effectiveness using the ALI metric
and position-level accuracy.

We implement this intervention in the One Gatekeeper network, which features positional
heterogeneity among non-aggregators. Specifically, we conduct six additional experimental sessions
that replicate the original six One Gatekeeper sessions.47 In each game of the new treatment,
non-aggregator participants received the same private signal as their counterparts in the original
sessions, while the aggregator received the message: “In Round 1 you received NO SIGNAL.” All
participants were explicitly informed that the aggregator received this message while they themselves
received a private informative signal.48 We refer to these new sessions as One Gatekeeper Scripted.
By holding initial signals fixed for all except the aggregator, any observed behavioral differences
between the two treatments can be attributed to the aggregator’s lack of private information.49

7.2 Analysis

Figure 6 plots matched game pairs, with ALI from the original One Gatekeeper sessions on the
x-axis and from the corresponding Scripted sessions on the y-axis. Dots above the 45-degree line
indicate more effective information aggregation in the Scripted sessions; dots below indicate the
opposite. The figure shows that withholding a private signal from the aggregator—while holding all
else constant—improved learning in the One Gatekeeper network.50 A comparison of the frequencies
of successes and failures confirms this macro-level improvement: absolute aggregation increased
from 12% to 19%, and both types of failures declined—complete failures from 12% to 7%, and
relative failures from 22% to 9%—when moving from the original to the scripted sessions.

Two factors explain this improvement. First, aggregators without a private signal performed
better in the second round: correct guesses rose from 86% in original sessions to 90% in Scripted
ones. This gain came primarily when the aggregator’s initial guess was in the minority. In such
cases, switching to the correct answer in round 2 increased from 59% to 90% (p = 0.015). By
contrast, when the first-round guess aligned with the majority, accuracy remained high and similar
across treatments (100% vs. 90%, p = 0.056). Thus, over 70% of aggregation errors in the original
sessions—among aggregators initially in the minority—were eliminated when the private signal was

47Due to the COVID-19 pandemic, these sessions were conducted online rather than in a physical lab. The subject
pool consisted of 120 undergraduate students at The Ohio State University. Experimental instructions are provided in
Section A.5 of the Empirical Appendix. For in-person vs. virtual sessions see Section A.6 of the Empirical Appendix
and Rigotti et al. (2023).

48Choi et al. (2005, 2012) use three-person networks in which agents receive a private signal with probability q < 1.
However, in their setup, participants do not know whether others are informed or not.

49One might worry that withholding the signal heightened the aggregator’s salience. If this was true then the
scripted experiment should have exhibited (i) higher imitation rates by everyone and (ii) stronger effect of the
aggregator switching. Table 9 do not support these predictions.

50A binomial probability test rejects the null hypothesis that dots are equally likely to fall above or below the
45-degree line (p ≈ 0.001). Figure 6 in Section C.4 of the Empirical Appendix replicates this using the ILI metric
(p ≈ 0.002).
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Figure 6: One Gatekeeper vs. One Gatekeeper Scripted
Notes: Each dot represents a matched pair of games. The horizontal axis reports the ALI value from the game played
under a standard One Gatekeeper session, while the vertical axis reports the ALI from the corresponding game in a
Scripted session. Circles indicate pairs where both games ended in fewer than 50 rounds (i.e. converged); squares
indicate pairs where the original game ended in more than 50 rounds (i.e. did not converge). Two matched pairs of
games are excluded from the figure because the original game featured a perfectly balanced signal distribution (nine
signals of each state).

withheld. This suggests that removing the private signal from the aggregator directly mitigated
under-reaction to new information.

Second, withholding the aggregator’s private signal also changes the behavior of others in the
network by increasing imitation—an indirect effect of the intervention. Recall that in the One
Gatekeeper network, it is optimal for all non-aggregators to imitate the aggregator from round
three onward.51 Table 9 compares third-round imitation across original and Scripted sessions. In
Regression (2), original sessions show that when a leaf’s second-round guess disagrees with the
aggregator’s, imitation drops by 53.1 pp. Panel B shows that this drop is significantly smaller in
Scripted sessions—under-imitation reduces by over 25%. A similar pattern holds for cluster members
in the local minority after round 2 that disagree with the aggregator: as Regression (5) shows, their
imitation drop of 53.6 pp in original sessions is reduced by over 60% in Scripted ones. By contrast,
Regression (4) shows no effect among cluster members in the local majority who disagree with the
aggregator—imitation remains low in both original and scripted sessions.

Table 10 analyzes the long-run effects of the intervention, revealing two key findings. First, for
aggregators, receiving no private signal is as effective as receiving a correct one—and significantly

51Result 2 in Section C of the Theoretical Appendix extends to the case where the aggregator lacks a private signal.
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Panel A: Regression Estimates
Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)
All Non-Aggregator Cluster Roles

Non-Aggregators Leafs Only All R2 Majority R2 Minority
Constant 0.957*** 0.967*** 0.956*** 0.971*** 0.826***

(0.0295) (0.0441) (0.0368) (0.0280) (0.136)
Incorrect R1 Guess -0.124*** -0.170*** -0.0680 -0.000118 -0.142*

(0.0349) (0.0582) (0.0482) (0.0446) (0.0828)
Aggregator Information
Disagree with Aggregator -0.594*** -0.531*** -0.672*** -0.687*** -0.536***

(0.0422) (0.0576) (0.0456) (0.0969) (0.101)
Aggregator Switch R1 to R2 0.0237 -0.0205 0.0806** 0.0414* 0.112

(0.0319) (0.0448) (0.0385) (0.0211) (0.115)
Disagree with Aggregator 0.143*** 0.101* 0.181** 0.0688 0.213*
× Aggregator Switch (0.0452) (0.0582) (0.0751) (0.132) (0.112)

Scripted Treatment
Scripted Flag 0.0283 -0.00184 0.0655** 0.0236 0.260*

(0.0214) (0.0300) (0.0284) (0.0273) (0.135)
Scripted Flag 0.115** 0.149** 0.0356 -0.0935 0.0781
× Disagree with Aggregator (0.0560) (0.0714) (0.0775) (0.148) (0.130)
Scripted Flag -0.0636 -0.0279 -0.115** -0.0476 -0.215
× Aggregator Switch (0.0446) (0.0622) (0.0519) (0.0308) (0.151)

Panel B: Scripted and Disagreement Contrast
Scripted Flag +
Scripted Flag 0.144** 0.147* 0.101 -0.070 0.338***
× Disagree with Aggregator (0.062) (0.079) (0.076) (0.143) (0.106)

Observations 1,887 999 888 688 200
# of Matches 111 111 111 105 83
# of Participants 242 239 242 234 134

Table 9: Imitation in the Third Round: One Gatekeeper vs. One Gatekeeper Scripted
Notes: All regressions in Panel A are linear, with standard errors clustered at the participant level and no fixed effects
included. The sample includes 51 standard One Gatekeeper games that converged and were not tied, and all 60
One Gatekeeper Scripted games. The dependent variable, Correct Third Round Guess, equals 1 if the participant’s
third-round guess matched the aggregator’s second-round guess. Incorrect R1 Guess, equals 1 if the participant’s
first-round guess matches her signal. Disagree with Aggregator equals 1 if the participant’s second-round guess differed
from the aggregator’s second-round guess. Aggregator Switch R1 to R2 equals 1 if the aggregator changed their guess
between rounds 1 and 2. Scripted Flag equals 1 for games played in a Scripted session. Panel B uses the results
exhibited in Panel A to calculate the difference between rates of imitation for participants in the scripted session who
disagree with the aggregator in round 2 and participants in the unscripted session who disagree with the aggregator
in round 2. Individual controls (omitted) include the risk attitude measure, the probability-matching measure, and
gender. Robustness checks appear in Section F.1 of the Empirical Appendix. *** p < 0.01, ** p < 0.05, * p < 0.1.

better than receiving a wrong one. This highlights a striking result: withholding information from
a fully connected agent improves her long-term performance. Second, for non-aggregators, the
negative impact of receiving an incorrect signal is nearly halved when the aggregator lacks a signal.
As shown earlier, this is driven by greater aggregator accuracy and increased imitation, especially
by leafs and cluster minorities.

The reduced under-imitation friction observed in the One Gatekeeper Scripted sessions, along
with third-round imitation patterns observed in original One Gatekeeper sessions (Table 7), points
to trust as a key driver of imitation. Imitators may over-doubt the aggregator’s judgment due to
common under-reaction to new information. However, imitation becomes more likely—when it
involves switching from one’s own guess—if cues boost confidence in the aggregator. Three cues
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Single Leafs Clusters
Aggregators Only Only

Constant 0.694*** 0.900*** 0.752***
(0.220) (0.0415) (0.0842)

Incorrect R1 Guess -0.251 -0.196*** -0.224***
(0.314) (0.0755) (0.0736)

Switched in R3+ -0.189 -0.00105 0.0105
(0.140) (0.0357) (0.0408)

Information and R1 Minority
Signal Wrong -0.346*** -0.372*** -0.352***

(0.128) (0.0607) (0.0598)
Size of R1 Majority 0.522 0.203**

(0.332) (0.0942)
Aggregator Signal -0.000320
Matches R1 Majority (0.0445)

Scripted Treatment
Scripted Flag -0.0695 0.00446 0.0232

(0.0531) (0.0274) (0.0483)
Scripted Flag 0.329** 0.176** 0.166**
× Signal Wrong (0.153) (0.0736) (0.0700)
Scripted Flag 0.0631
× Agg Signal Match R1 Major (0.0507)

R-squared 0.181 0.138 0.182
Observations 111 999 888
Clusters 88 239 242

Table 10: Final Guess Accuracy: One Gatekeeper vs. One Gatekeeper Scripted
Notes: All regressions are linear, with standard errors clustered at the participant level. The sample includes 51
standard One Gatekeeper games that converged and were not tied, and all 60 One Gatekeeper Scripted games. The
dependent variable, Correct Final Guess, equals 1 if the participant’s final-round guess was accurate. Incorrect R1
Guess is an indicator of sub-optimal first round guess, Switched in R3+ is an indicator of late switching. Signal Wrong
equals 1 if the participant’s private signal was incorrect. For the aggregator in scripted games we use the signal in
the corresponding unscripted game. Size of R1 Majority is the fraction of majority guesses in the participant’s local
neighborhood in round 1. Aggregator Signal Matches R1 Majority equals 1 if the aggregator’s signal matched the local
majority in the first round. For scripted games we use the aggregator’s signal in the corresponding unscripted game.
Scripted Flag equals 1 for games played in a Scripted session. Individual controls (omitted) include the risk attitude
measure, the probability-matching measure, and gender. Robustness checks appear in Section F.2 of the Empirical
Appendix. *** p < 0.01, ** p < 0.05, * p < 0.1.

stand out from our analysis: (1) alignment between the aggregator and the local majority, (2) the
aggregator revising their guess between rounds 1 and 2, signaling responsiveness, and (3) knowing
the aggregator lacks a private signal, suggesting her guess reflects true information aggregation.
Each cue can enhance trust in the aggregator and thereby increase the likelihood of imitation.

Finding 9. Depriving the aggregator from having a signal mitigates under reaction to new informa-
tion, which in turn increases trust and improves imitation—especially among leafs and second-round
minority cluster members. Overall, this intervention significantly enhances information aggregation
in One Gatekeeper networks.

8 Discussion and Implications

We begin our closing discussion with a concise welfare analysis that identifies positions with superior
average and long-run performance (Subsection 8.1). Then, in Subsection 8.2 we close the loop
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Figure 7: Overall and Long-term Performance, by Network Position

Notes: The frequency of correct guesses for all rounds in a game (gray bars) and for the final guess only (black bars).
Whiskers denote 95% confidence intervals, with standard errors clustered at the participant level. The horizontal line
at 70% indicates the probability of correct guess if one follows own signal and ignores everything else.

by using the behavioral and structural frictions documented in Sections 6 and 7 to account for
the network-level patterns described in Section 5. While the myopic Bayesian and equal-weights
naïve models serve as benchmarks throughout the results sections, in Subsection 8.3 we consider
several variants of these models drawn from the literature and show that none is consistent with the
experimental data. Finally, in Subsection 8.4 we characterize the necessary properties of individual
behavior that any model, Bayesian or heuristic, must satisfy in order to be consistent with the data
and we suggest three settings for future theoretical research.

8.1 Performance by Network Positions: Winners and Losers

In this section, we use structural and behavioral frictions to account for positional heterogeneity in
performance. Figure 7 shows the frequency of correct guesses, calculated over all rounds (overall
performance) and for the final guess (long-term performance). These measures capture welfare
differences across positions and indicate which positions are most advantageous within and across
networks.52 Although large standard errors—driven by substantial variation across participants and
signal distributions—limit precision, three key patterns emerge.

52A companion paper Agranov et al. (2025) examines whether subjects’ subjective perceptions align with these
differences; see also Footnote 16.
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First, consider nodes connected to all others—namely, all agents in the Complete network and
aggregators in Single Aggregator networks. By the end of the first round, these positions have access
to all private signals and should, in principle, achieve very high accuracy both overall and in the
final round. In practice, however, under-reaction to new information limits performance to below
87% correct guesses in both measures, which amounts to less than 60% of the expected improvement
upon the benchmark of 70%.

Second, consider nodes that, by Proposition 1, should imitate an influencer—namely, non-
aggregators in Single Aggregator networks, leafs in the Symmetric Core–Periphery network, and
non-connectors in the Two Cores networks. Proposition 1 implies that these nodes should match
their influencers’ final-guess accuracy and approximate it on average. It turns out, however, that
accuracy rates for potential imitators are lower across all networks, positions, and measures, in
comparison to their influencers, reflecting the under-imitation behavioral friction.

Third, degree alone does not have a consistent effect on performance. We observe a positive
effect within networks when under-imitation leads higher-degree influencers to outperform potential
imitators, and across networks when leafs generally perform worse than most other positions.
Conversely, we find a negative effect within the One Gatekeeper network, where leafs outperform
cluster members on average, and across networks, where connectors in the Two Cores networks
achieve higher accuracy than aggregators in the Star and Connected Spokes networks, despite having
lower degree. Taken together, these patterns show that degree alone cannot account for information
aggregation performance; the broader network structure must be considered.

8.2 Closing the Loop

In Subsection 8.1 we used structural and behavioral frictions to account for positional heterogeneity
in performance. We now draw on the same frictions to interpret the empirical patterns in the
aggregate performance of networks.

Complete Network: Under-Reaction Both the Bayesian and naïve models predict successful
learning by all agents in the Complete network. In the data, however, while the Complete network
outperforms all other networks, learning is not perfect. In addition, we document a strong positive
relationship between aggregate performance and the overall quality of private signals.

We attribute these deviations to the behavioral friction of under-reaction to new information.
In a typical game, by the beginning of the second round, some subjects recognize that their private
signal conflicts with the majority’s signal. Yet in nearly half of these cases, they fail to revise
their guess (Table 4). Moreover, the probability of not switching is positively correlated with
the size of the minority (Table 5). This pattern of incorrect guesses persists even though errors
are readily detectable in the Complete network. We conclude that aggregate performance in the
Complete network is systematically constrained by under-reaction to new information, which is more
pronounced when private signals are weaker and persists across rounds.
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Single Aggregator Networks: Under-Reaction and Under-Imitation The Bayesian model
predicts perfect learning in Single Aggregator networks: the aggregator correctly aggregates all
signals by round 2, and from round 3 onward all non-aggregators imitate her. By contrast, under the
equal-weights naïve model, non-aggregators treat the aggregator as an equally informed peer, so that
as their neighborhoods grow they place excessive weight on local information, generating failures of
information aggregation. Empirically, however, Single Aggregator networks perform surprisingly
poorly. They perform on par with the Complete network when initial information is poor, but fail
to improve as information quality increases, and frequently fail to aggregate information even when
the vast majority of signals are correct.

To account for these patterns, we identify two interacting behavioral frictions. First, as in the
Complete network and against the predictions of both models, subjects in Single Aggregator networks
under-react to new information in the second round (Table 4). The intervention shows that, at least
for aggregators, this friction is largely mitigated when they receive no private signal: receiving no
signal is as effective as receiving a correct one. Second, non-aggregators imitate infrequently when
imitation requires changing their guess. These third-round imitation failures have a lasting negative
effect on the accuracy of subsequent guesses. We show that this under-imitation reflects an excessive,
irrational, response to the concern that the aggregator may have under-reacted to new information;
when the aggregator’s under-reaction appears unlikely, imitation rates increase. Moreover, the low
rates of switching are inconsistent with the equal-weights naïve model (Footnote 43).

Together, these two frictions generate the aggregate failures observed in the data and explain
why both benchmark models are inconsistent with the data. Under-reaction by the aggregator
undermines her perceived reliability, while excessive doubts about the aggregator’s accuracy lead
non-aggregators to under-imitate, preventing information from spreading through the network.
Unlike in the Complete network, the size of the first-round minority does not affect the aggregator’s
long-run performance, helping to explain why performance in Single Aggregator networks does not
improve with signal quality. One possible interpretation is that aggregators in these networks lack
the implicit monitoring pressures present in the Complete network.53

Cluster(s) Networks: Under-Reaction, Under-Imitation, and Structural Frictions The
Bayesian model predicts that Cluster(s) networks are subject to structurally induced frictions:
unavoidable structural frictions in the Symmetric Core-Periphery network, which arise when the
core majority is either slim or does not align with the global majority, and cognitive structural
frictions in Two Cores networks, which arise when the internal majorities of the two cores are
misaligned. By contrast, the naïve model predicts aggregation failures because core members, in

53Social facilitation theory—particularly the concept of evaluation apprehension—suggests that concern about being
judged by others can influence behavior and performance (Cottrell (1972), Aiello and Douthitt (2001) and Guerin
(2010)). We are not aware of applications of this theory in experimental social networks, but in our setting, more
connected neighbors may be perceived as more judgmental and knowledgeable. Since neighbor connectivity should not
affect second-round guesses, we test the monitoring hypothesis by adding the maximum degree centrality among a
subject’s neighbors to a regression where the dependent variable is correct round 2 guess (final column of Table 5).
The coefficient (0.186) is positive but statistically insignificant (t = 1.26), likely due to limited variation—only five
values—and absorption by session fixed effects. Therefore, we omit it from the reported regressions.
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most cases, disregard information that originates from outside the core. Experimentally, we find
that Cluster(s) networks respond positively to signal quality and match the Complete network’s
performance when initial signals are strong. When signals are weak, however, they frequently fail to
aggregate information.

Subjects in Cluster(s) networks under-react to new information at rates similar to those in the
Complete network. Under-imitation, however, varies systematically with network structure: while
leafs in the Symmetric Core-Periphery network imitate in about 60% of cases, imitation rates among
non-connectors in the Two Cores networks are substantially lower—only 21%–25%. This difference
is driven by the substantial overlap between the neighborhoods of non-connectors and connectors,
whose only additional links are to their counterparts in the other core. As in the Complete and
Single Aggregator networks, we show that the behavioral patterns generated by these frictions are
inconsistent with the predictions of both the Bayesian and the naïve models.

The structural features of Cluster(s) networks give rise to frictions that are absent in the other
network architectures. When the aggregate distribution of signals is weak, the probability that
the core majority is slim or misaligned in the Symmetric Core-Periphery network, or that the
internal majorities of the two cores are misaligned in Two Cores networks, is high. Accordingly, weak
aggregate signal distributions are associated with frequent aggregation failures in Cluster(s) networks,
whereas strong aggregate signal distribution implies negligible likelihood of such frictions.54

We conclude that performance in Cluster(s) networks is hindered by both structural and
behavioral frictions. Structurally, segregated groups struggle to integrate outside information.
Behaviorally, under-reaction to new information in Cluster(s) networks is comparable in magnitude
to that observed in the Complete network, while imitation rates depend also on the influencer’s
informational advantage. These structural and behavioral frictions are particularly damaging when
signal quality is weak, leading to poor performance, but are largely neutralized when signal quality
is high, allowing Cluster(s) networks to approach the performance of the Complete network.

Summary We conclude that neither the myopic Bayesian model nor the equal-weights naïve
model provides a satisfactory account of the long-run outcomes and behavioral patterns observed
across the networks we study. In Subsection 8.3 we show that adding noise to the Bayesian model,
introducing heterogeneity or time dependence into the weights of the naïve model, or assuming that
the population contains a mixture of Bayesian and naïve agents, all fail to account for the observed
behavior. Instead, we place behavioral patterns at the center of our analysis. In Subsection 8.4 we
discuss three settings that incorporate these patterns, for future theoretical research.

54For example, we define strong-signal games as those in which no more than four agents receive incorrect signals
(see Section 5.1). With strong signals, core majorities are necessarily aligned in Two Cores networks, and a clear
majority in the core of the Symmetric Core-Periphery network is guaranteed unless all incorrect signals are assigned to
core members. Thus, the likelihood of structural frictions in Cluster(s) networks is negligible when signals are strong.
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8.3 Other Models of Information Aggregation

A central theme of this study is that understanding behavior in our laboratory networks requires
incorporating systematic structural and behavioral frictions. Throughout the analysis, we benchmark
behavior against the myopic Bayesian and equal-weights naïve models and show that these frameworks
are unable to account for several key patterns in the data. In this section, we examine several more
sophisticated variants of the myopic Bayesian and naïve models proposed in the literature and show
that, despite their generality, they too remain inconsistent with the experimental evidence.

Myopic Bayesian model with noise. We begin with myopic Bayesian models that introduce
noise. A prominent example is the Quantal Response Equilibrium model of Choi et al. (2012), which
assumes that agents follow a logit model of discrete choice.55 This model further assumes that agents
hold rational expectations regarding their neighbors’ true error rates and use estimated error rates
from the previous decisions to update their posterior beliefs. One indication of the inconsistency
between noisy myopic Bayesian models and our data comes from second-round behavior: Table 5
shows that the rate of incorrect guesses in the second round among first-round minority members
remains substantial, even when that minority is very small. Such behavior cannot be a rational
response to first-round mistakes: only 7.8% of first-round guesses are incorrect, so the probability
that small minorities in round 1 are correct is negligible. In addition, recall that in the spirit of
Quantal Response Equilibrium model, we introduced a reduced-form model in Section 6.3 to assess
whether Under-Imitation could be a rational response to Under-Reaction to New Information. When
calibrated to the “true error rates” in our data, the model predicts imitation rates far higher than
those actually observed.

The naïve model with higher weight on self: Grimm and Mengel (2020). As previously
discussed, the standard naïve model fails to account for key patterns in our data: subjects often do
not aggregate correctly in round 2 (Finding 6) and deviate from the model’s predictions in round 3
(see Footnote 43). A common adjustment of the naïve model introduces unequal weighting, typically
to reflect over-weighting of one’s own signal. For instance, Grimm and Mengel (2020) observe
that “relative to the naïve model, participants on average place too much weight on their own
information.” They propose a model in which the weight on a subject’s own previous guess increases
with its clustering coefficient—perhaps to account for correlation in the information received from
neighbors—while the weights on neighbors’ previous guesses remain equal. We claim, however, that
the rule suggested by Grimm and Mengel (2020) is inconsistent with our data. First, when the
self-clustering coefficient is zero, this rule collapses to the equal-weights naïve model. Therefore, it
predicts that the aggregator in the Star network—where the self-clustering coefficient is zero—should
follow the equal-weights naïve model prediction and aggregate correctly in round 2. Yet, our data
show that this occurs in only 42% of cases where the aggregator is in the minority at the end of

55An agent’s random utility over alternatives depends on expected payoff and a private, standard Gumbel,
idiosyncratic shock, i.i.d. across periods, agents, and actions.
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round 1. Second, a subject in the Complete network should switch less often than an aggregator in
a Single Aggregator network of the same size, due to the higher weight assigned to their own guess.
This prediction is contradicted by the evidence in Table 4.

The naïve model with higher weight on self: General model. One interpretation of an
unequal weighting rule—where the weights on neighbors’ previous guesses are equal—is a fixed-
threshold heuristic: a subject switches only if the number of neighbors with an opposing guess
exceeds some fixed threshold. To test this, we elicited two subject-level measures: the maximum
opposing majority size (MAX) for which they did not switch, and the minimum majority size (MIN)
for which they did switch. We were able to get both numbers for 398 subjects. Only 65 of them
(16.3%) satisfied the condition MIN > MAX, which is required for a fixed-threshold rule or a naïve
model in which the subject assigns equal weights to all neighbors.

The naïve model with time-dependent weights. Consider a broader class of naïve models,
which we refer to as the wi(t)-heuristic. In this framework, agents assign time-dependent weights to
their own guess and to each of their neighbors’ guesses in the previous period. These weights are
fixed before the game begins and may vary across agents, neighbors, and rounds.56 Crucially, these
heuristics assume static perceptions of neighbors: weights are fixed and unaffected by neighbors’
observed behavior during the information aggregation process. This assumption contradicts our
empirical findings on trust, discussed in Section 7.2. There, we show that imitation behavior depends
on cues that increase confidence in the aggregator’s guess—such as alignment with the local majority
or evidence of responsiveness (e.g., the aggregator switching between rounds 1 and 2). These cues
dynamically shape subjects’ beliefs about the aggregator’s credibility. Any wi(t)-heuristic is thus
inconsistent with the observed trust-based imitation, as trust implies that different histories of play
may lead to different weights—a feature these models explicitly rule out.

Usually, the weakness of naïve updating is said to be its neglect of network structure, which
Grimm and Mengel (2020) found to be inconsistent with their data. Our findings, however, highlight
a distinct shortcoming: naïve models typically assume that agents’ perceptions of their neighbors
are fixed, unaffected by the evolving history of the game. Our evidence suggests that subjects
do update their perceptions over time. In this sense, the naïve model simplifies complexity—by
ignoring network structure—while also inadvertently eliminating a cognitively natural mechanism:
adjusting perceptions of others based on experience over time. While one could imagine relaxing the
model further to allow weights to vary based on observed history, this might introduce too many

56Formally, let B(i) = {j1, . . . , jb} denote the set of direct neighbors of agent i. Her weight vector at time t is
wi(t) = (w0

i (t), w1
i (t), . . . , wb

i (t)) where
∑b

k=0 w
k
i (t) = 1 and ∀k ∈ {0, . . . , b} : wk
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to include stochastic perturbations (see Choi et al. (2023)), but this extension does not add to the present discussion.

48



degrees of freedom, undermining the model’s explanatory power.57

Mixture models. Finally, Mueller-Frank (2014) and Chandrasekhar et al. (2020) propose models
in which agents are either myopic Bayesians or naïve. In both models, a subject whose first-round
guess differs from the local first-round majority is expected to switch in round 2. However, Table
4 shows that in at least 40% of such cases, subjects do not switch. Moreover, when both models
predict that a potential imitator should switch in round 3, only 41.8% of subjects actually do so.
These deviations indicate that a substantial share of the subject pool cannot be accurately classified
as either myopic Bayesian or naïve.

8.4 Back to Theory

A natural next step is to develop theoretical models of information aggregation that accommodate
the behavioral frictions documented in this study. A full theoretical treatment is beyond the scope
of the present paper, but we outline three modeling directions that, in our view, offer plausible
starting points for theories capable of capturing the experimental evidence. Two of these approaches
operate at the individual level: a behavioral-Bayesian model that preserves optimizing behavior
while incorporating the systematic deviations from Bayesian updating that we document, and a
procedural-heuristic model in which agents follow a simple updating rule motivated by the observed
patterns of behavior. A third direction works at the population level by enriching existing mixture
models (e.g., Chandrasekhar et al. (2020)) with additional behavioral types. The purpose of this
discussion is not to adjudicate among these alternatives, but to identify a set of theoretically coherent
avenues that future work may explore in order to account for the empirical patterns observed in the
experiment.

The behavioral-Bayesian model remains within the myopic Bayesian framework, but augments
it with switching costs that may help rationalize the patterns documented in our individual and
positional-level analysis. Standard Bayesian models implicitly assume that changing one’s guess is
costless, yet under-reaction to new information suggests that switching carries a cost that depends on
the strength of the evidence that justifies it, and possibly on perceived monitoring pressures. Under
the common knowledge assumption, agents understand that neighbors optimize subject to switching
costs. Thus, observing a neighbor fail to switch may lead an agent to revise the inferred accuracy of
that neighbor’s guess in subsequent rounds. Such a mechanism could potentially generate patterns
resembling under-imitation (particularly with respect to influential neighbors who do not switch),
in contrast to Claim 1, where the decision maker’s switching was assumed to be costless.58

57Jansen (2024) proposes dynamic weighting between one’s own guess and a weighted average of neighbors’ guesses,
in a different setting of information aggregation over networks.

58For illustration, suppose agent i’s period-t utility is ut
i(at

i) = Pr(at
i is correct | ht

i, s(i)) − c · 1{at
i 6= at−1

i } where
c ∈ [0, 1] and ht

i is the history agent i observes at the beginning of period t (see the Theoretical Appendix for an
exact definition). Let p = Pr(W is correct | ht

i, s(i)) and suppose at−1
i = B. Switching to W yields ut

i(W ) = p− c,
while staying with B yields ut

i(B) = 1− p. The agent strictly prefers at
i = W over at

i = B when p > (1 + c)/2. Thus
behavior follows a (linear) threshold rule. More general specifications—non-linear switching costs, heterogeneous costs
(with or without information about others’ costs), or stochastic choice—could generate richer threshold structures
that may improve consistency with the data.
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The procedural-heuristic approach starts from the equal-weights naïve model but introduces
three simple modifications motivated by the experimental evidence.59 First, to capture the high
rates of non-switching documented above, the heuristic allows agents to place additional weight
on their own previous guess. As discussed in Subsection 8.3, this adjustment alone cannot explain
the full set of observed deviations from the equal-weights naïve model. Second, in line with our
evidence on selective imitation, agents may assign extra weight to the previous guess of a neighbor
who occupies an informationally advantaged position (the “influencer”). This modification implicitly
requires a richer understanding of the network than in the standard model, since agents must be
able to identify such an influential neighbor. Third, the data suggest that imitation depends on
the influencer’s observed behavior, in particular on whether she switches between the first and
second rounds. A parsimonious way to incorporate this history dependence is to condition the
over-weighting rule on whether the influencer switches between rounds 1 and 2, increasing only
self-weights if she does not switch and increasing both self- and influencer-weights if she does.60

Although this procedure is reasonably straightforward to implement, it requires agents to possess
greater awareness of the network structure than in the equal-weights naïve case and to apply slightly
more complex decision rules involving weighted averages and conditional updates.

The third approach is less specific than the previous two. Its starting point is that the various
Bayesian and heuristic models discussed in Subsection 8.3 each align with some of the empirical
findings while conflicting with others. For example, naïve models with greater weight placed
on one’s own past action are consistent with the reluctance to switch, whereas Bayesian models
naturally incorporate awareness of the network structure and history dependence. This suggests
that a mixture model—in the spirit of Chandrasekhar et al. (2020)—that allows for substantial
heterogeneity within both the Bayesian and heuristic classes may also yield a good fit to the
experimental data. However, introducing sufficiently rich heterogeneity raises concerns of overfitting,
and, more importantly, makes such models analytically cumbersome: when agents are required
to hold beliefs about neighbors whose types are unknown, both inference and prediction become
difficult to characterize in a tractable way.

Taken together, these three directions underscore that any successful theory of learning in
networks must build on the behavioral frictions and structural frictions documented in this pa-
per—frictions that shape how information moves through the social structure.

59Grimm and Mengel (2020) note that “participants might be using rules of thumb that, although not Bayesian,
are less naïve than the naïve model would suggest.”

60Formally, for each round t ≥ 2, let wt
i > 0 denote a common baseline weight that agent i assigns to every

j ∈ B(i) ∪ {i}. Let f denote the influencer (if one exists), and let αi, βi ≥ 0 capture, respectively, the over-weighting
of the self and of an influencer who switches between rounds 1 and 2. Define the un-normalized weights for each
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ŵt

ik

.

The weighted-majority rule then sets at
i (for t ≥ 2) using the weights (w̃t

ij)j∈B(i)∪{i}. In the standard equal-weights
naïve model, all baseline weights satisfy wt

i = 1/bi in all rounds and αi = βi = 0.

50



References

Acemoglu, D., Dahleh, M. A., Lobel, I., and Ozdaglar, A. (2011). Bayesian learning in social
networks. The Review of Economic Studies, 78(4):1201–1236.

Acemoglu, D. and Ozdaglar, A. (2011). Opinion dynamics and learning in social networks. Dynamic
Games and Applications, 1(1):3–49.

Agranov, M., Gillen, B., and Persitz, D. (2024). A comment on “testing models of social learning
on networks: Evidence from two experiments”. Econometrica, 92(5):1–6.

Agranov, M., Gillen, B., and Persitz, D. (2025). When do we recognize the best information
aggregator? Technical report, Working paper.

Agranov, M., Healy, P. J., and Nielsen, K. (2023). Stable randomisation. The Economic Journal,
133(655):2553–2579.

Aiello, J. R. and Douthitt, E. A. (2001). Social facilitation from triplett to electronic performance
monitoring. Group Dynamics: Theory, Research, and Practice, 5(3):163.

Amelio, A. (2024). Social learning, behavioral biases and group outcomes. Working Paper.

Anderson, L. R. and Holt, C. A. (1997). Information cascades in the laboratory. The American
economic review, pages 847–862.

Augenblick, N., Lazarus, E., and Thaler, M. (2025). Overinference from weak signals and underin-
ference from strong signals. The Quarterly Journal of Economics, 140(1):335–401.

Azrieli, Y., Chambers, C. P., and Healy, P. J. (2018). Incentives in experiments: A theoretical
analysis. Journal of Political Economy, 126:1472–1503.

Ba, C., Bohren, A., and Imas, A. (2024). Over- and underreaction to information. Working Paper.

Ba, C., Bohren, J. A., and Imas, A. (2025). The role of representational and computational
complexity in belief formation. In AEA Papers and Proceedings, volume 115, pages 631–636.
American Economic Association 2014 Broadway, Suite 305, Nashville, TN 37203.

Bala, V. and Goyal, S. (1998). Learning from neighbours. The review of economic studies, 65(3):595–
621.

Battiston, P. and Stanca, L. (2015). Boundedly rational opinion dynamics in social networks: Does
indegree matter? Journal of Economic Behavior & Organization, 119:400–421.

Bavelas, A. (1950). Communication patterns in task-oriented groups. Journal of the acoustical
society of America.

51



Becker, J., Brackbill, D., and Centola, D. (2017). Network dynamics of social influence in the
wisdom of crowds. Proceedings of the national academy of sciences, 114(26):E5070–E5076.

Benjamin, D. J. (2019). Errors in probabilistic reasoning and judgment biases. In Handbook of
Behavioral Economics: Applications and Foundations 1. Elsevier.

Berninghaus, S. K., Ehrhart, K.-M., and Keser, C. (2002). Conventions and local interaction
structures: experimental evidence. Games and Economic Behavior, 39(2):177–205.

Bernstein, E. S., Shore, J. C., and Jang, A. J. (2023). Network centralization and collective
adaptability to a shifting environment. Organization Science, 34(6):2064–2096.

Bigoni, M., Camera, G., and Gallo, E. (2025). Money and social exclusion in networks. Unpublished.

Bikhchandani, S., Hirshleifer, D., Tamuz, O., and Welch, I. (2024). Information cascades and social
learning. Journal of Economic Literature, 62(3):1040–1093.

Brandts, J., Giritligil, A. E., and Weber, R. A. (2015). An experimental study of persuasion bias
and social influence in networks. European Economic Review, 80:214–229.

Brown, C. (2020). Networks and economic behavior: Theory and experiments. Dissertation.

Cardoso, F. M., Gracia-Lázaro, C., Moisan, F., Goyal, S., Sánchez, Á., and Moreno, Y. (2020).
Effect of network topology and node centrality on trading. Scientific Reports, 10(1):11113.

Cassar, A. (2007). Coordination and cooperation in local, random and small world networks:
Experimental evidence. Games and Economic Behavior, 58(2):209–230.

Chandrasekhar, A. G., Larreguy, H., and Xandri, J. P. (2020). Testing models of social learning on
networks: Evidence from two experiments. Econometrica, 88(1):1–32.

Charness, G., Feri, F., Meléndez-Jiménez, M. A., and Sutter, M. (2014). Experimental games on
networks: Underpinnings of behavior and equilibrium selection. Econometrica, 82(5):1615–1670.

Chen, D. L., Schonger, M., and Wickens, C. (2016). otree—an open-source platform for laboratory,
online, and field experiments. Journal of Behavioral and Experimental Finance, 9:288–97.

Choi, S. (2012). A cognitive hierarchy model of learning in networks. Review of Economic Design,
16:215–250.

Choi, S., Gale, D., and Kariv, S. (2005). Behavioral aspects of learning in social networks: an
experimental study. In Experimental and Behavorial Economics. Emerald Group Publishing
Limited.

Choi, S., Gale, D., and Kariv, S. (2012). Social learning in networks: a quantal response equilibrium
analysis of experimental data. Review of Economic Design, 16(2):135–157.

52



Choi, S., Galeotti, A., and Goyal, S. (2017). Trading in networks: theory and experiments. Journal
of the European Economic Association, 15(4):784–817.

Choi, S., Gallo, E., and Kariv, S. (2016). Networks in the laboratory. In The Oxford Handbook of
the Economics of Networks. Oxford University Press.

Choi, S., Goyal, S., Guo, F., and Moisan, F. (2024a). Experimental evidence on group size effects in
network formation games. Working Paper.

Choi, S., Goyal, S., Guo, F., and Moisan, F. (2024b). Experimental evidence on the relation between
network centrality and individual choice. Working Paper.

Choi, S., Goyal, S., Moisan, F., and To, Y. Y. T. (2023). Learning in networks: An experiment on
large networks with real-world features. Management Science, 69(5):2778–2787.

Conlon, J., Mani, M., Rao, G., Ridley, M., and Schilbach, F. (2022). Not learning from others.
Working Paper.

Corazzini, L., Pavesi, F., Petrovich, B., and Stanca, L. (2012). Influential listeners: An experiment
on persuasion bias in social networks. European Economic Review, 56(6):1276–1288.

Cottrell, N. B. (1972). Social facilitation. In McClintock, C. G., editor, Experimental Social
Psychology, pages 185–236. Holt, Rinehart and Winston, New York.

Dasaratha, K. and He, K. (2021). An experiment on network density and sequential learning. Games
and Economic Behavior, 128:182–192.

DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical association,
69(345):118–121.

DeMarzo, P. M., Vayanos, D., and Zwiebel, J. (2003). Persuasion bias, social influence, and
unidimensional opinions. The Quarterly journal of economics, 118(3):909–968.

Enke, B. (2024). The cognitive turn in behavioral economics. Working Paper.

Esponda, I., Oprea, R., and Yuksel, S. (2023). Seeing what is representative. The Quarterly Journal
of Economics, 138(4):2607–2657.

Gale, D. and Kariv, S. (2003). Bayesian learning in social networks. Games and economic behavior,
45(2):329–346.

Geanakoplos, J. D. and Polemarchakis, H. M. (1982). We can’t disagree forever. Journal of Economic
theory, 28(1):192–200.

Gneezy, U. and Potters, J. (1997). An experiment on risk taking and evaluation periods. The
quarterly journal of economics, 112(2):631–645.

53



Golub, B. and Jackson, M. O. (2010). Naïve learning in social networks and the wisdom of crowds.
American Economic Journal: Microeconomics, 2(1):112–149.

Golub, B. and Jackson, M. O. (2012). How homophily affects the speed of learning and best-response
dynamics. The Quarterly Journal of Economics, 127(3):1287–1338.

Golub, B. and Sadler, E. (2016). Learning in social networks. In Bramoullé, Y., Galeotti, A., and
Rogers, B., editors, The Oxford Handbook of the Economics of Networks. Oxford University Press.

Goyal, S. and Vega-Redondo, F. (2005). Network formation and social coordination. Games and
Economic Behavior, 50(2):178–207.

Grant, D. A., Hake, H. W., and Hornseth, J. P. (1951). Acquisition and extinction of a verbal con-
ditioned response with differing percentages of reinforcement. Journal of experimental psychology,
42(1):1–5.

Grimm, V. and Mengel, F. (2020). Experiments on belief formation in networks. Journal of the
European Economic Association, 18(1):49–82.

Guerin, B. (2010). Social facilitation. In The Corsini encyclopedia of psychology. Wiley Online
Library.

Humphreys, L. G. (1939). Acquisition and extinction of verbal expectations in a situation analogous
to conditioning. Journal of Experimental Psychology, 25(3):294–301.

Jackson, M. O. (2008). Social and Economic Networks. Princeton University Press.

Jackson, M. O. (2019). The friendship paradox and systematic biases in perceptions and social
norms. Journal of political economy, 127(2):777–818.

Jackson, M. O. and Rogers, B. W. (2005). The economics of small worlds. Journal of the European
Economic Association, 3(2-3):617–627.

Jackson, M. O. and Wolinsky, A. (1996). A strategic model of social and economic networks. Journal
of Economic Theory, 71:44–74.

Jansen, Y. (2024). Social learning and stubbornness. Working Paper.

Jiang, Y., Mi, Q., and Zhu, L. (2023). Neurocomputational mechanism of real-time distributed
learning on social networks. Nature neuroscience, 26(3):506–516.

Kearns, M. (2012). Experiments in social computation. Communications of the ACM, 55(10):56–67.

Kirchkamp, O. and Nagel, R. (2007). Naive learning and cooperation in network experiments.
Games and Economic Behavior, 58(2):269–292.

54



Leavitt, H. J. (1951). Some effects of certain communication patterns on group performance. The
journal of abnormal and social psychology, 46(1):38.

Lerman, K., Yan, X., and Wu, X.-Z. (2016). The" majority illusion" in social networks. PloS one,
11(2):e0147617.

Loomes, G. (1998). Probabilities vs Money: A Test of some Fundamental Assumptions About
Rational Decision Making. The Economic Journal, 108(447):477–489.

McFarland, D. A., Moody, J., Diehl, D., Smith, J. A., and Thomas, R. J. (2014). Network ecology
and adolescent social structure. American sociological review, 79(6):1088–1121.

Mobius, M. and Rosenblat, T. (2014). Social learning in economics. Annu. Rev. Econ., 6(1):827–847.

Morris, S. (2000). Contagion. The Review of Economic Studies, 67(1):57–78.

Mossel, E., Sly, A., and Tamuz, O. (2015). Strategic learning and the topology of social networks.
Econometrica, 83(5):1755–1794.

Mueller-Frank, M. (2013). A general framework for rational learning in social networks. Theoretical
Economics, 8(1):1–40.

Mueller-Frank, M. (2014). Does one bayesian make a difference? Journal of Economic Theory,
154:423–452.

Mueller-Frank, M. and Neri, C. (2015). A general model of boundedly rational observational learning:
Theory and evidence. Unpublished.

Mueller-Frank, M. and Neri, C. (2021). A general analysis of boundedly rational learning in social
networks. Theoretical Economics, 16(1):317–357.

Persitz, D. (2010). Core-periphery r&d collaboration networks. Technical report, Working paper.

Rigotti, L., Wilson, A., and Gupta, N. (2023). The experimenters’ dilemma: Inferential preferences
over populations. Unpublished.

Rivas, J. (2013). Probability matching and reinforcement learning. Journal of Mathematical
Economics, 49(1):17–21.

Rubinstein, A. (2002). Irrational diversification in multiple decision problems. European Economic
Review, 46(8):1369–1378.

Shaw, M. E. (1964). Communication networks. In Advances in experimental social psychology,
volume 1, pages 111–147. Elsevier.

Siegel, S. and Goldstein, D. A. (1959). Decision-making behavior in a two-choice uncertain outcome
situation. Journal of Experimental Psychology, 57(1):37–42.

55



Weizsäcker, G. (2010). Do we follow others when we should? a simple test of rational expectations.
American Economic Review, 100(5):2340–2360.

Woodford, M. (2020). Modeling imprecision in perception, valuation, and choice. Annual Review of
Economics.

Ziegelmeyer, A., March, C., and Krügel, S. (2013). Do we follow others when we should? a simple
test of rational expectations: comment. American Economic Review, 103(6):2633–2642.

56


	Introduction
	The Experimental Literature on Information Aggregation on Networks
	The Experiment
	Networks
	Experimental Protocol

	Theoretical Benchmarks
	Belief Formation over Communication Networks: Theoretical Setting
	The Myopic Bayesian Model of Belief Formation over Communication Networks
	The Naïve Model of Belief Formation over Communication Networks
	Predicted Dynamics Network-by-Network

	Aggregate Analysis
	Data
	Defining a Measure of Information Aggregation
	Learning Outcomes in the Long-run
	Dynamics
	Summary of Long-run Outcomes
	The Myopic Bayesian and Naïve Models: Evaluation of Aggregate Predictions

	Positional Analysis
	First Round Guesses
	Second Round Guesses
	Third Round Guesses
	Guesses Beyond the Third Round
	Structural Frictions
	Final Round Guesses

	Intervention: Mitigating the Behavioral Frictions
	Design
	Analysis

	Discussion and Implications
	Performance by Network Positions: Winners and Losers
	Closing the Loop
	Other Models of Information Aggregation
	Back to Theory


