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“Imitation is not just the sincerest form of flattery - it’s the sincerest form of learning.”
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Abstract

We study how network architecture shapes learning dynamics in medium-sized groups
using laboratory experiments. Participants are incentivized to guess the true state of nature
based on two sources of information: (i) a private signal received before the game begins,
and (ii) the past guesses of their immediate neighbors. We focus on identifying behavioral
and structural frictions that impede successful learning. We find that subjects systematically
under-react to new information—even in the Complete network—leading to persistent learning
failures. This behavioral friction is exacerbated when the distribution of private signals is less
informative. Additionally, in network positions where imitation is optimal, participants often fail
to imitate better-informed neighbors (influencers). This under-imitation is too frequent to be
explained as a rational response to influencers’ own under-reaction to new information. Instead,
evidence—including results from a novel intervention—implies that a lack of trust is the primary
driver of this behavioral friction. As a result, networks with a single central fully connected node
often perform poorly, even when most private signals are accurate. Beyond behavioral frictions,
we define structural frictions as combinations of network topology and signal distribution that
hinder aggregation even under fully rational behavior. Networks with centralized hubs or weakly
connected cliques are especially prone to both behavioral and structural frictions in the presence
of noisy signals. We argue that a dual framework of behavioral and structural frictions provides

a sharper account of learning dynamics than standard Bayesian or naive (DeGroot-style) models.
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1 Introduction

In forming beliefs and making decisions, individuals integrate private information—drawn from their
own knowledge and experiences—with insights gained by observing others’ behavior. The extent to
which an individual can observe others depends on their position in the social network, the overall
structure of that network, and their beliefs about how their neighbors process the information they
encounter.

To illustrate the process of belief formation through private and social information, consider
the decision problem faced by an adolescent contemplating whether to wear a bicycle helmet. As
governments increasingly promote cycling as an environmentally friendly mode of transportation,
bicycle safety has become a crucial concern, making helmet use a key policy objective. While medical
authorities advocate for mandatory helmet legislation and its enforcement," environmentalists caution
that such regulations may discourage cycling and lead to riskier riding behaviors (

( )). An often-overlooked factor in adolescents’ helmet use is the role of social learning.
While a teenager may initially form beliefs about helmet safety based on information from parents,
teachers, or online sources, those beliefs are subsequently updated through repeated interactions
with peers. Each time the teenager joins a group bike ride, he observes whether others wear helmets,
and over time, these observations accumulate. His decision on whether to wear a helmet in his
next ride reflects both his prior beliefs and this evolving social evidence. This dynamic suggests
that the observed correlation between peer helmet use and individual adoption may not stem solely
from peer pressure—as is commonly understood—but could also reflect a process of information
aggregation.” This pattern of belief updating—where private information is iteratively adjusted
based on social observation—is common. Similar patterns arise in domains ranging from consumer
purchases of products that are visible only to close acquaintances (e.g., home appliances, mattresses)
to belief formation about workplace culture (e.g., wage renegotiation).

The theoretical literature on information aggregation in networks typically focuses on the
asymptotic dynamics of societies of infinite size. This literature predominantly studies two benchmark
approaches. One assumes fully Bayesian agents, who optimally extract all available information
from their private signals, the network structure and the observed behavior of neighbors, often

under the assumptions of myopia and the ability to communicate their beliefs (e.g.

'Tn 2023, the American College of Surgeons (ACS) updated its statement on bicycle safety and helmet promotion
( ( )), emphasizing that “Helmet use has been shown to significantly decrease the risk
of both fatal and nonfatal head injuries. Based on these data, the ACS supports efforts to promote, enact, and sustain
universal bicycle helmet legislation and enforcement.” The ACS further reports that (i) more than 1,000 people die
and 350,000 require emergency care annually due to bicycle-related injuries in the U.S.; (ii) in 2020, bicycle crashes
resulted in 5.4 billion USD in medical costs and an additional 7.7 billion USD in lost productivity and lives lost; and
(iii) helmets reduce the risk of head injury by 48%, traumatic brain injury by 53%, facial injury by 23%, and fatal
injury by 34%. A 2022 technical report by the American Academy of Pediatrics provides similar statistics and also
advocates for mandatory helmet laws ( ( .

2The American Community Survey notes that “peer and adult companion helmet use is associated with increased
bicycle helmet use by children.” This pattern is typically attributed to peer pressure—for instance,
( ) argues that “peer pressure remains the primary barrier to helmet use among adolescents” (see also

( ) and even ( ) on helmet adoption in hockey).



( ), ( ), ( ), and ( )). The other follows
the DeGroot model ( ( )) to posit naive agents, who update their beliefs by simply
averaging the beliefs of their neighbors (e.g. ( ) ( ) ),
and ( )). Some studies adopt hybrid approaches, including frameworks
where agents are neither fully Bayesian nor purely naive (e.g., ( ),

( ), and ( )), or they allow for populations with
heterogeneous updating rules ( ( )). The key insight from this literature is
that, under mild conditions on network structure, agents’ inference abilities, and signal properties,
beliefs in connected societies tend to converge to the truth.

By contrast, experimental studies of information aggregation in networks have mostly focused on
very small groups, typically involving 3 to 7 participants. A notable exception is ( )
who study three networks with 40 participants each.” Most of these experiments are urn-guessing
games ( ( )) played over undirected networks, where each participant receives
an initial noisy, informative signal about a predefined state and must repeatedly update their guess
of the true state based on dynamically acquired information from their direct neighbors’ actions
(see Section #.1). These experiments generally find deviations from Bayesian updating and require
adjustments to match observed behavior to the naive model.

We identify two key limitations in this literature. First, many real-world social networks are
neither infinitely large nor as small as those studied in most experiments. Second, the prevailing
focus on just two decision-making paradigms—Bayesian and naive—limits the ability to account
for deviations from rationality that are central to behavioral economics. By conducting laboratory
experiments with relatively large networks, we aim to uncover both structural and behavioral
frictions that influence individual-level information aggregation and the overall performance of
different network structures. We show that expanding the analytical framework allows for a better
understanding of both individual social learning behavior and network-level information aggregation
outcomes.

We conduct a series of urn-guessing games played over undirected networks of size 18. Building on
recent research in sociology and organizational science, we select six network architectures—alongside
the Complete network—that incorporate at least one of two key features commonly observed in
real-world networks: hierarchy, where a central node connects to all others, and cohesiveness, where

subsets of nodes form tightly connected cliques. In each game, the true state is randomly determined

3 ( ), ( ) and ( ) provide excellent surveys
of this literature. ( ) conclude that “An overarching conclusion ... is that egalitarianism in
network structure, formalized in various ways, promotes information aggregation and welfare. This lesson holds across
a variety of Bayesian, quasi-Bayesian, and heuristic settings.”

4Several studies report experiments conducted in physical or virtual laboratories using networks of size between
15 and 50 nodes (see ( ), ( ), ( ), ( ),

(2014), (2017), (2017), (2020), (2024a,b), (2025)).
However, none of these studies involve observational learning in settings where the network structure is explicitly
revealed to subjects. As ( ) emphasize in the context of information aggregation: “Further experimental
research is required to identify the type of bounded rationality ... [we have] ... to investigate how this updating varies
with the size and complexity of the network, as the largest network explored so far has only 7 individuals.”



by the computer to be either WHITE or BLUE, with probability 0.5 each. Each participant then
receives a noisy private signal about the state that is correct with a probability of 70%. In the
first round, participants make an initial guess about the state. From the second round onward,
they observe their direct neighbors’ guesses from all previous round and update their own guesses
accordingly. The game concludes when no player changes their guess for three consecutive rounds.
Participants are incentivized to guess correctly in each round.

We characterize the dynamics of each network and signal distribution under both the Bayesian
and naive models of information aggregation. These theoretical predictions serve two purposes:
first, to demonstrate that neither model fully captures participants’ behavior; and second, to
establish benchmarks for identifying frictions in the information aggregation process. We say that a
structural friction impedes information aggregation when it is common knowledge that all agents
are myopically Bayesian and yet information aggregation may still fail. Our analysis identifies
three network architectures in the experiment that are susceptible to such frictions. In one of
them, a small subset of agents aggregates information on behalf of the entire network, without
incorporating signals from outside the subgroup.” In the other two cases, the networks consist of
two large cliques connected by only a few links. In cases where the signal distribution is such that
the majority of signals in one clique differs from that in the other, the connectors—nodes with at
least one direct neighbor from the other clique—must convey the relative strength of each majority
through their actions alone. While correct aggregation is feasible in this setting, it poses a complex
inference problem, akin to the classic “cheating spouses” logic puzzles studied in the literature on
common knowledge. We say that in these cases we encounter surmountable structural friction, that
is, a situation in which successful information aggregation is theoretically possible but requires an
exceptionally high level of sophistication from decision-makers.

We evaluate network performance using an Aggregate Learning Index (ALI), which measures
the extent to which participants revise incorrect private signals into correct final guesses. While
the Complete network exhibits the highest level of information aggregation, its performance still
falls short of the predictions generated by both the Bayesian and naive models. Single-Aggregator
networks—where one node is connected to all others—perform comparably to the Complete network
when the signal distribution is close to uniform, but, surprisingly, fail to improve as the number of
correct signals increases. As a result, these networks often fail to aggregate information effectively,
even when a large majority of participants receive correct private signals. In contrast, Cluster(s)
networks—where the network includes one or two large cliques—are responsive to the overall signal
quality. They match the performance of the Complete network when most signals are correct but
frequently fail when the signal distribution is close to a tie.

To unpack the sources of these aggregation failures, we analyze behavior at the positional level.
We find that most of the informational dynamics unfold in the first three rounds. Any reasonable

model of myopic agents predicts that participants rely on their private signals in the first round.

5This result mirrors the “royal family” argument proposed by ( ) for directed networks. It may
also be understood as an instance of the related “Majority Illusion” (see ( ) and ( ).
( ) argue that such networks lack egalitarianism (see Footnote 3).



Indeed, in more than 92% of cases, participants’ initial guesses align with their private signals.
Before making their second-round guess, participants observe the guesses of their direct neighbors.
Both the Bayesian and the naive models predict that participants will follow the majority of signals
inferred from their neighbors’ guesses, combined with their own private signal. However, we find
that across all networks and positions, participants who belong to the local minority systematically
under-react to new information from their neighbors’ first-round guesses and tend to stick with their
own initial guess. Notably, this friction diminishes as the strength of the evidence in favor of the
majority signal increases. This behavior is consistent with well-documented under-reaction to new
information, observed across a wide range of settings ( ( ))-

In round three, indirect information from non-neighboring nodes becomes accessible. According

to Bayesian benchmarks, agent i should imitate their direct neighbor, agent j (the influencer), if agent
j is strictly better informed than 7 and all of i’s other neighbors. However, we observe systematic
under-imitation across all networks and positions when the second-round guess of the influencer
differs from that of the potential imitator. This finding is consistent with prior experimental
studies in sequential social learning settings, where participants tend to imitate predecessors less
frequently than optimal when imitation requires going against their private signal (
( ), ( )). We show that imitation rates in our setting are far too low to
be explained solely as a rational response to under-reaction to new information. In addition, we
establish that under-imitation is not a result of naive behavior. Our analysis reveals that these two
behavioral frictions are closely related. In particular, we identify behavioral patterns suggesting
that under-imitation may reflect a lack of confidence in the informational value of the influencer’s
behavior. First, imitation rates increase when the local majority supports the influencer rather than
the potential imitator. Second, imitation becomes more likely when the influencer is observed to
switch their guess between the first and second rounds—indicating that they are not under-reacting
to new information.

To further examine these two behavioral frictions—and their relationship—we conduct a targeted
intervention designed to mitigate under-reaction to new information. We focus on the One Gatekeeper
network, in which 9 participants form a clique and the remaining 9 “leafs” are each connected solely
to the same clique member, the “aggregator.” In each game of the new treatment, non-aggregators
receive the same private signal as in the original sessions, whereas the aggregator receives no signal—a
design feature known to all participants. This intervention significantly improves performance:
ALI increases; over 70% of aggregation errors in the original sessions—among aggregators initially
in the minority—are eliminated; and imitation rises among participants who disagree with the
aggregator—particularly leafs and second-round minority clique nodes. Together with prior evidence,
these results suggest that the observed low levels of imitation stem from a lack of trust in the
aggregator’s second-round behavior, which reflects their under-reaction to new information. When
a clear reason for trust is introduced (i.e., the aggregator has no private signal), imitation increases
accordingly.

Our final step is to link the micro-level behavioral frictions and the structural frictions to



aggregate-level performance. The complete network under-performs due to under-reaction to new
information—an effect that intensifies as signal quality declines. Single Aggregator networks suffer
from compounded behavioral frictions: under-reaction by the aggregator and under-imitation by
the other participants. Moreover, the aggregator’s under-reaction appears insensitive to the size
of the first-round minority—possibly due to the absence of monitoring—so performance does not
improve even as signal quality increases. Finally, performance in Cluster(s) networks is hindered
by both structural and behavioral frictions. These frictions are particularly damaging when signal
quality is weak, resulting in poor performance. However, they are largely neutralized when signal
quality is high, allowing these networks to match the performance of the complete network under
strong signals.

The remainder of the paper is organized as follows. Section 2 describes the experimental design.
Section 3 presents the Bayesian and naive benchmarks. For each benchmark, we outline general
insights into predicted behavior and apply these predictions to the network structures used in our
experiment. Section 4 evaluates network-level performance using the ALI and shows that failures
in information aggregation cannot be explained by structural frictions alone. This section also
examines the performance of the naive model and the dynamics of the information aggregation
process. Section 5 analyzes positional behavior in the first three rounds and in the final round of the
game. Section 0 introduces our intervention and reports its outcomes. Section 7 then connects these
macro-level results to the behavioral and structural frictions identified earlier and highlights the
network positions that consistently perform well or poorly. Section & concludes with a discussion
of: (i) connections to the experimental literature; (ii) the (in)-compatibility of alternative models,
beyond the Bayesian and naive benchmarks; and (iii) the decision-making procedures used by
participants. Formal statements, proofs, and robustness exercises are provided in the theoretical

and empirical appendices.

2 The Experiment

Here we describe the networks we study and present the details of the experimental protocol.

2.1 Networks

Recent research in sociology and organizational science has identified hierarchy and cohesiveness as
two distinct, fundamental features of real-life networks (e.g. ( ) and

( )). Our experimental design focuses on undirected networks exhibiting at least one of
these features. We operationalize hierarchy by introducing a central node connected to all others, and
cohesiveness through the inclusion of cliques (i.e., fully connected subsets of nodes). Furthermore,
most networks in our design are pairwise stable under simple variations of the well-known strategic
network formation game described in the connections model introduced by

( )." Following this rationale, we chose the following seven networks, each with 18 members.

5For an overview, see Chapter 6 in ( ). For the specific network structures, refer to

( )s ( ), and ( ).



o The Complete network is a fully connected set of 18 nodes (a clique). This network represents
the upper bound for information aggregation when there are no connectivity restrictions.
0%0%,
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o Core periphery networks are characterized by two distinct types of positions: the core and
the periphery. In our design, the core consists of 9 members who are directly connected to
each other, forming a clique. The periphery comprises 9 members, each connected to a single
core member. We examine two variants of this structure. In the Symmetric Core Periphery
network, each peripheral node is linked to a distinct core member, resulting in a balanced
distribution of connections between the core and periphery ( ( ) refer to a
similar directed network as a “Royal Family”). In the One Gatekeeper network all peripheral
nodes are connected to a single core member, referred to as the “Gatekeeper”. Note that the
Gatekeeper is connected to all others nodes. This creates a hierarchical structure where the

Gatekeeper serves as the sole intermediary between the core and periphery.
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e Hub and Spokes networks feature two types of positions: the hub, which is connected to all
other agents (as the Gatekeeper in the One Gatekeeper network), and the spokes, which may
or may not be connected with each other. The two chosen networks feature disconnected

spokes (Star) and locally segregated neighborhoods of spokes (Connected Spokes).

) o 0 o o
(5] [ 0]
° ° 6 6° %o o
0 o ° o o °
o (c] ° o o o
o o )
%90° °
Star Connected Spokes



o Multiple cliques networks include two cliques of size 9 that are sparsely connected. The two
chosen networks differ in the number of connections between the cores. The Two Cores with
One Link network exhibits a single connection between two connectors, one from each clique.
The Two Cores with Three Links network features a single connector in one clique that is

directly connected to three nodes in the other clique.
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2.2 Experimental Protocol

Main game. In each session, a group of 18 participants plays 10 repetitions of the main game
with one of the network structures described above. At the beginning of the main game, participants
are randomly assigned a position in a network and observe its visual representation depicting all the
connections between the players. At the same time, nature randomly determines the state, which is
either WHITE or BLUE with equal chance. The state is fixed for the duration of the game and
is shared by all eighteen players. Before the first round, each player gets a partially informative
private signal about the state; the signals are conditionally independent and are correct with a
probability 70%. After observing private signals, players are prompted to guess the state. In round
two, and all the subsequent rounds, players can observe guesses made by their direct neighbors in all
previous rounds and guess the state again. The information about neighbors’ guesses is summarized
in an intuitive way on the screen and is accessible at any point in time throughout the game (Figure
). That is, we implement perfect recall by providing participants with all the information they
have observed at any point in the game, and allowing them to quickly access this information. We
chose this intuitive, comprehensive, accessible, and visual interface to isolate the effect of network
architecture on learning, minimizing potential confounds such as imperfect memory or incomplete
information.
Whereas most information aggregation experiments (e.g. ( , ) and
( )) impose a fixed predefined number of rounds, we chose not to do so in order
to avoid “last-round effects” and to ensure that information aggregation is exhausted. In our design,
the game ends in one of two ways. First, the game ends when all eighteen players submit the same
guesses in three consecutive rounds. These do not have to be the same guesses across players, but it

has to be the case that no player changes her mind in the last three consecutive rounds.’ Second, if

"The diameter of a network is the longest shortest path between any two agents. The diameter is considered to be
a natural baseline for the number of periods required for information to flow through the entire network. The largest
diameter in our networks is three, which dictates our choice of three rounds of “inactivity” as an indication that a
subject has exhausted her learning potential.
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+ In Round 1 you received signal blue.
Please guess the color chosen by the computer and press Submit.

Figure 1: Screenshot of Beginning of Round 2, One Gatekeeper Session

Notes: The screenshot, taken at the beginning of round 2 of game 1, displays the experimental interface used in the
One Gatekeeper network session as seen by Player D. On the left, the network configuration (fixed throughout the
game) is shown: the subject’s role (Player D) is highlighted with a yellow circle, while Player D’s direct neighbors are
marked with red-filled circles; all other participants appear as hollow circles. Below the network image, participants
interact with decision buttons. When either the WHITE or BLUE button is selected, the SUBMIT button becomes
active, allowing the participant to submit their guess. On the right, a table summarizes the participant’s own guesses
and those of their direct neighbors from all previous rounds—the current view shows the guesses from round 1.
Navigation arrows above the table enable participants to review their guessing history across rounds. Additionally,
the private signal, which remains unchanged throughout the game, is displayed beneath the history table.

the game reaches round 50, then there is a 50% chance that each next round is the last one. We use
this ending procedure as a safeguard against situations in which some players continue to switch
endlessly.” Participants are rewarded for the accuracy of their guesses. Specifically, at the end of
the experiment, one game is randomly selected for payment. Then, one round of this chosen game
is randomly selected for payment ( , ). A participant receives $20 if she guesses the
state correctly in this chosen round and $5 if her guess is wrong.” We provide the instructions for

the One Gatekeeper network game in Section of the Empirical Appendix.

Other experimental details. At the end of the experiment, subjects complete several incen-
tivized short control tasks. These include the elicitation of risk attitudes (

( )) and their tendency to probability match—i.e., to choose an action with a frequency equal to

8This game termination scheme was activated in only 31 of 410 games. Most of these (22) occurred in the first
two games of a session. ( ) use random termination as the only game ending scheme.

9The payments in the experiment that took place in Israel were 60 NIS for a correct guess and 15 NIS for an
incorrect guess.



# of sessions and their location

UCI UCSD TAU OSU 7+ sessions  # subjects
Complete 2 2 1 0 5 sessions 106 subjects
Star 2 1 1 2" 6 sessions 121 subjects
One Gatekeeper 2 2 2 0 6 sessions 122 subjects
Symmetric Core Periphery 6* 0 0 0 6 sessions 120 subjects
Connected Spokes 2 2 2 0 6 sessions 122 subjects
Two Cores with One Link 2 2 2 0 6 sessions 120 subjects
Two Cores with Three Links 2 2 0 2" 6 sessions 122 subjects

Table 1: Experimental Sessions

Notes: The number of sessions conducted at each location for each network is reported. In the last two columns we
summarize the total number of sessions per network and the total number of participants per network. * indicates

sessions that were conducted online due to the closure of physical labs during COVID-19 times.

the probability of that action being optimal, a clearly suboptimal heuristic.”’ Section of the
Empirical Appendix provides these tasks as well as an additional short survey. Measures derived
from these tasks are used as controls in the individual-level analysis (see Section of the Empirical
Appendix for details).

We conducted 47 sessions. Each session lasted on average 90 minutes and the average total
payment was $23.9, including $7 participation fee. To make sure that the rules of the game were
common knowledge, the experimenter read the instructions out loud and all participants had to
complete a comprehension quiz and answer all the questions correctly (see Section of the
Empirical Appendix). Because of the large number of subjects required for our experiments, we
conducted the experiment at four different locations: the University of California in Irvine, the
University of California in San Diego, Ohio State University, and Tel Aviv University.'' The early
sessions were conducted using the Multistage software developed at Social Science Experimental
Laboratory in Caltech. Due to incompatibility issues between Multistage and newer versions of
JAVA we switched to oTree while keeping the interface and the procedures identical ( ,

). Finally, due to the COVID-19 pandemic, the last 10 sessions were conducted online rather
than in a physical lab. The subject pool for the online sessions was the same as in the physical lab
(undergraduate students in one of the four universities) and we kept the protocol identical between

the two types of sessions (for a comparison see Section of the Empirical Appendix and

10Probability matching has been documented across various domains (see ( ), ( ),

( ), ( ), and ( )). See Footnote 7 in ( ) for an

example of probability matching in an information aggregation experiment. ( ) provides a recent account of

the connection between probability matching and reinforcement learning. ( ) study experimental
methods for mitigating probability matching in the laboratory.

"YWe conducted a few pilot sessions at the Experimental Economics Laboratory in Ben Gurion University of the
Negev. The goal of these sessions was mainly to test the functionality of the software. These pilot sessions had different
network structures in each game of a session, which resulted in much more noisy behavior than when participants play
the same game 10 times.

10



( )). Table | summarizes the experimental sessions.

3 Theoretical Benchmarks

In Section 3.1, we introduce the theoretical setting. Sections and then present two benchmark
models. The first assumes that agents are myopic Bayesian utility maximizers and that this is a
common knowledge. The second follows the naive-learning framework of ( ). In Section

, we apply these predictions to the network structures used in our experiment. Throughout,
for clarity and conciseness, we state the main results informally with their intuitive explanations.

Formal statements and proofs are relegated to Sections A and I3 of the Theoretical Appendix.

3.1 Belief Formation over Communication Networks: Theoretical Setting

Consider an undirected network G =< N, E > where N = {1,2,...,n} is the set of agents and
E is the set of edges. The edge ij € E indicates that agents ¢ and j are directly connected.
B(i) = {j : ij € E} denotes the set of agent i’s direct neighbors with cardinality b(i). We assume
that there are no isolated agents, i.e., Vi : b(i) > 0. A subset of agents, C' C N, forms a clique in G
if (i) each pair of agents in this subset is directly connected, Vi,j € C :ij € E, and (ii) there is no
other agent that is connected to all clique members, Vk € N\C,3i € C : ik ¢ E.

There are two equally probable states of nature, w € {WHITE, BLUE}. Every agent i receives
a signal s(i) € {w,b}. Conditional on the realized state w, signals are independently and identically
distributed across agents and match the true state with probability q € (%, ) If w = WHITE
then s(i) = w with probability ¢ and s(i) = b with probability 1 — ¢; similarly, if w = BLUE then
s(i) = b with probability ¢ and s(i) = w with probability 1 — g. The signals’ accuracy parameter q
is common knowledge, but the state of nature w is unknown to the agents.

The belief formation dynamics begins after the state is realized and the agents receive their
private signals. In each round ¢ € {1,2, ...}, agent i chooses an action al € A = {W,B}. In round 1,
the only information available to the agent is her own private signal. In later rounds, before making
a choice, each agent observes the past actions of her direct neighbors. We assume perfect recall: in
every round, they can observe their own private signal, their past actions, and the complete actions’
history of their direct neighbors. In each round, the agent’s objective is to guess the state that
corresponds to the majority of private signals.’” An agent’s payoff is 1 for a correct guess and 0

otherwise. In case of a tie, any guess is considered to be correct.

2In each session, more than 18 participants were recruited. At the start of each game, 18 subjects were randomly
assigned to play, while the rest served as observers. No subject was assigned the observer role in two consecutive
rounds. Observers chose one network position whose payoff they would receive if the game was selected for payment.
Their information was only the network structure. Thus, they were incentivized to select the position they perceive as
the most desirable. We analyze observer choices in ( ).

1311 the experiment, the goal of each subject was to guess the correct state of nature. Note that in a finite setting, it
might happen that the realized majority of signals differs from the true state. This event is rare given our experimental
parameters, n = 18 and ¢ = 0.7; theoretically, it happens about 2% of the time (see Table 2 in Section B3 of the
Empirical Appendix) and empirically it happened in 10 out of 410 games. To reconcile the theoretical setting with
our experimental setup, for the data analysis, in those 10 cases, we redefine the state to be the majority of signals.

11



3.2 The Myopic Bayesian Model of Belief Formation over Communication Networks

Assume that all agents are myopic Bayesian utility maximizers, and that this is common knowledge.
That is, each agent knows her own signal, takes a myopically optimal action in each round, and
dynamically forms beliefs about the other n — 1 signals (see discussion in ( ).
In this section, we focus on general insights provided by the myopic Bayesian model of belief
formation over networks. Specific predictions for the networks used in our experiment are presented
in Section

Before proceeding, we briefly discuss the implications of the model’s assumptions. First, assuming
myopia is restrictive.” In some network structures and in some signals’ distributions, it may be
dynamically optimal to take actions that are not optimal from a myopic perspective. ~ Second,
due to the myopia assumption, the model describes a decision problem rather than a strategic
game. This is because there are no payoff externalities: each agent’s preferences depend only on
her own actions and the distribution of initial signals. Without myopia, dynamic considerations
could turn the setting into a game of strategic information revelation. Third, the model implies that
each agent believes others act according to myopic Bayesian reasoning. This assumption may be
violated in experimental settings, where subjects might identify behavior inconsistent with Bayesian
inference.'” Finally, agents hold no prior over the behavior of others who are indifferent between
actions based on their histories (see Footnote 12). As a result, in some networks and for some
signals’ distributions, the model does not yield a unique prediction.

In the first round, since the signals are informative, all agents choose the action that corresponds
to their private signal (Lemma | in Section A of the Theoretical Appendix). Due to the common
knowledge that everyone is myopic Bayesian, the agents know that their direct neighbores’ disclose
their private signals through their first-round actions (Lemma 2 in Section A of the Theoretical
Appendix) which are observed before taking the second round’s action. This feature of the model
has important implications for subsequent play: any additional information agents acquire after the
first round pertains only to their beliefs regarding the signals of non-neighbors (N\({i} U B(i))).

In the second round, the optimal behavior entails choosing the action that aligns with the
majority of first-round actions among an agent’s direct neighbors—which, given first-round behavior,
corresponds to the majority of private signals in the agent’s local neighborhood (Lemma 3 in Section

of the Theoretical Appendix).

Optimal behavior from the third round onward is more difficult to characterize in general, as it

depends on the network structure, the agent’s position within it, and the realized distribution of

MMyopia is typically justified either by assuming each node represents a continuum of agents (e.g.,
( )), or by imposing strong discounting.

5For example, agent i might wish to study how her actions influence those of her neighbors, using these reactions
to better infer their information and beliefs.

16For example, selecting an action that contradicts the majority in the Complete network, or switching actions in
the absence of new information. See ( ) for a related discussion of mixed models in which
some agents are myopic Bayesian and others are naive.

Lemma / in Section A of the Theoretical Appendix shows that, due to the common knowledge that all agents
are myopic Bayesian utility maximizers, an agent can deduce some information on their neighbors’ neighbors after
observing the second-round guesses.
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signals. However, ( ) provide a characterization of network positions for which it is
optimal to imitate a selected neighbor. We say that agent i imitates agent j when V¢ > 2 : a! = a?-_l.

Intuitively, ( ) show that imitation is optimal for agent 7 when one of her neighbors,
7, possesses strictly superior information relative to ¢ and to each of her other neighbors. Formally,
agent j is said to be better informed than agent ¢ if B(i) U {i} C B(j) U{j}, denoted by j > i.

Under the myopic Bayesian model, such an informational advantage implies that j has nothing to
learn from 4’s inferences. That is, if j >4, then j should ignore i’s actions after observing her private
signal in the first round (Lemma 5 in Section A of the Theoretical Appendix). Moreover, if j is also
better informed than all of i’s other neighbors, then j possesses every piece of information that might
reach ¢ through alternative paths, before i receives it herself. Hence, by imitating j, agent ¢ does
not forgo any potential future information. Define the set of i’s neighbors who are strictly better
informed than 7 and all her other neighbors as C(i) = {j € B(i)|Vk € {B(i)\{j}} U {i} : j > k}.
Proposition 1 from ( ), re-stated below, shows that if C'(7) is non-empty, it must

be a singleton containing the unique neighbor whom ¢ should imitate—referred to as the “influencer”.

Proposition 1. Let i € N. Then, C(i) is either empty and imitation could lead to sub optimal
t—1

behavior by agent i or it is a singleton, C(i) = {j}, and Vt > 2 : al = a;

is optimal for agent 1.

In Section 3.4, we show that many positions in our experimental networks satisfy this characteri-
zation. Therefore, under the myopic Bayesian model, imitation is the optimal strategy for agents in

those positions.

3.3 The Naive Model of Belief Formation over Communication Networks

The influential model of naive belief formation introduced by ( ) assumes that in each
period t > 1, agents update their beliefs by taking a weighted average of their own belief and the
beliefs of their direct neighbors from period ¢ — 1.

We focus here on the simplest version of the model, in which each agent assigns equal and fixed
weights of b(i)ﬁ to her own belief and to each of her b(i) neighbors. In our binary setting—where
the state, signals, and actions are binary—this rule is sometimes referred to as the DeGroot action
model. It implies that agents guess according to their private signal in the first round, and follow
the local majority of period t — 1 in each subsequent round ¢ > 1. In the case of a tie, either action
is permissible. For a formal statement see Definition | in Section A of the Theoretical Appendix. In
Section 8.2, we revisit our experimental findings in light of more complex forms of naive updating

discussed in the literature.

8The imitation principle in ( ) uses imitation in settings that include feedback, as a possible
strategy, and infers that the agents’ payoffs should be similar in equilibrium. Notably, that principle does not account
for the optimality of imitation.

9This definition implies that: (a) 4 and j are direct neighbors; (b) there exists at least one agent k € B(j) such

that k ¢ B(i); and (c) j has a finer information structure than i. According to ( ), this means
that j is more informed than ¢, and by ( ), she therefore has a higher expected payoff.

20For surveys, see Section 8.3 in ( ) and Section 3 in ( ). The Naive belief
formation model can be represented as a Quasi-Bayesian model of ( ) with a specific

functional form.
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The behavior of naive agents in the first two rounds is straightforward: they report their private
signal in the first round and follow the majority of their local neighborhood’s first-round guesses
in the second. Combined with the discussion in Section , this implies that naive agents are
behaviorally indistinguishable from myopic Bayesian agents during the first two rounds, since both
rely on their private signal in round 1 and on the local majority in round 2.

A key feature of collective naive behavior is the rapid stabilization of beliefs within highly
cohesive groups (see ( )). Informally, consider a clique C' in network G, and let C' denote
the subset of members in C' for whom the observed first-round majority in their local neighborhood
coincides with the first-round majority in C. Lemma 6 in Section A of the Theoretical Appendix
shows that if C is sufficiently large, then its members follow the clique’s majority from the second

round onward and maintain it indefinitely with no regard to information outside the clique.

3.4 Predicted Dynamics Network-by-Network

In this section, we use both the Bayesian model and the naive model to derive predictions regarding
the dynamics of guesses across the seven networks implemented in our experiment. For clarity and
accessibility, we present informal statements in the main text; formal versions and corresponding
proofs are provided in Section B of the Theoretical Appendix. The section concludes with Table 2,

which offers a concise summary of the theoretical predictions.

The Complete network (Result 1 in Section B of the Theoretical Appendix). In the
Complete network, there are no connectivity restrictions as all agents are directly connected. Under
both the Bayesian and the naive models, if there is no tie in the signals’ distribution, agents will
converge to the correct guess already in the second round, with no further switches. In the case of a

tie, neither model yields a prediction.

Networks with a single aggregator (Results 2, 3, 4 and 5 in Section B3 of the Theoretical
Appendix). Three networks— the One Gatekeeper, the Star, and the Connected Spokes—feature
a single aggregator, that is, a single node connected to all other nodes.”” Under the myopic Bayesian
model, and assuming no tie in the signal distribution, all agents converge to the correct guess by
the third round, with no further switches thereafter. In round 1, each agent reports their private

signal, allowing the aggregator to observe the full signal distribution. In round 2, the aggregator

2lLemma 6 analyzes the behavior of naive agents in cliques, whereas Proposition 1 in ( )
examines naive consensus behavior in clans, and Proposition 2 in ( ) highlights failures of
information aggregation by naive agents. Despite these differences, all three results rest on a common principle in the
DeGroot action model: highly connected naive agents are unlikely to change their actions beyond the first few rounds.
A similar idea appears in ( ) in the context of the DeGroot belief model, where Proposition 3
shows that the rate of convergence of beliefs in a multi-type random network is determined by the rate of learning
across cohesive groups, rather than within them.

22The naive model, however, predicts that if a majority is formed in period t, all agents follow the majority guess
in all subsequent periods.

ZFormally, a network with a single aggregator contains a unique node %, referred to as the aggregator, such that
B(i) = N\{i}, while for any other node, j # i, there exists at least one node k ¢ {i,j} such that jk ¢ E, that is,

B(j) € N\{j}-

14



reports the majority signal (if one exists), while non-aggregators follow their local majorities. In the
event of a tie, the model remains silent regarding the aggregator’s behavior. From round 3 onward,
all non-aggregators imitate the aggregator, who, for each of them, satisfies the conditions for being
an influencer as characterized in Proposition

The naive model requires a separate analysis for each network. We begin with the Star network,
where the non-aggregators (the “leafs”) are completely disconnected from one another. In this
network, a stable majority is reached in the round in which the aggregator’s guess aligns with the
majority’s guess. This dynamic arises from the behavior of naive leafs: if a leaf agrees with the
aggregator, she maintains her guess; if she disagrees, she may switch. Specifically, if the aggregator’s
private signal corresponds to the majority signal, then all agents holding that signal continue to
report it in all subsequent rounds. However, if the aggregator’s private signal corresponds to the
minority signal, she switches her guess and triggers possible subsequent switches by the leafs. This
dynamics continue until the aggregator’s guess aligns with the majority’s guess.

In the Connected Spokes network, a single aggregator connects multiple cliques of varying sizes,
each containing between three and § — 1 non-aggregators.” Building on Lemma 6 in Section
of the Theoretical Appendix, we show that in any clique with a strict first-round majority, the
non-aggregators adopt the majority guess in round 2 and never switch thereafter. In the case of a tie,
their guesses remain undetermined until a majority emerges, after which they follow it consistently.
The aggregator monitors the overall distribution of guesses across all agents and may continue to
switch as long as ties persist within some cliques (for a similar reasoning see ( ))-

Finally, we apply Lemma 6 once again to analyze naive behavior in the One Gatekeeper network,
where the gatekeeper is the sole member of the core clique connected to peripheral hangers-on.
We show that, due to the rapid convergence of the core, if the core’s majority signal coincides with
the global majority signal, most agents guess correctly by round 3 at the latest. However, if the
core’s majority is incorrect, a substantial share of agents may quickly converge on the wrong guess.

The Single Aggregator networks illustrate the contrasting implications of the two models for
information aggregation. In the Bayesian model, agents assume others are myopic Bayesian and
recognize that the aggregator’s second-round guess reflects all private signals. As a result, they
optimally imitate her, and information flows perfectly through the aggregator. In contrast, in the
naive model the aggregator is treated as just another peer, so her influence diminishes with the
size of the local neighborhoods. In fact the results show that non-aggregators embedded in cliques
often form their final beliefs before even observing the aggregator’s guess. Thus, in the naive model,

information rarely flows through the aggregator.

24 Formally, a Connected Spokes network with aggregator i consists of a collection of cliques C1, ..., Cm, each
satisfying 3 < |Cj| < & — 1, such that any two distinct cliques share only the aggregator in common: for all ji # ja,
C;, NCy, =1.

25 A One Gatekeeper Network is a core periphery network in which the core consists of n = m + 1 agents: the
aggregator ¢ and the set C(G) = j1,...,Jm. The periphery consists of n agents, K(G) = ki,. .., kn, each of whom is
connected only to the aggregator. We assume n is odd.
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The Symmetric Core—Periphery Network (Result ¢ in Section of the Theoretical
Appendix). The Symmetric Core-Periphery network consists of two equal-sized groups of &
agents each (n is even and greater than 4): a fully connected core and a periphery of disconnected
nodes, each linked to a unique core member. Result 6 in Section BB of the Theoretical Appendix
characterizes behavior under both the myopic Bayesian and naive models.

According to the Bayesian model, agents follow their private signals in the first round. If a clear
majority emerges in the core (i.e., the difference in signal frequencies exceeds 1), all core members
adopt the majority guess from the second round onward, and peripheral agents begin imitating
them in the third round. If there is no clear majority, the dynamics depend on whether % is even or
odd. When 3 is even, information aggregates perfectly: the core agents guess the global majority
from the third round, and the periphery imitate them from round 4. When % is odd, some core
agents are indifferent in round 2, and the model yields no definitive prediction.

Interestingly, under the naive model, core agents behave identically to their Bayesian counterparts.
However, peripheral agents are less predictable: from round 3 onward, they follow the local majority
(which may be tied) rather than imitating their connected core member.

These results highlight that, in most cases, core agents —whether naive or myopically Bayesian

— base their decisions solely on the signals within the core. This can be detrimental. Consider the
case where n = 18: if six core members receive signal w and the remaining 12 agents receive signal
b, then all agents converge to the incorrect guess w from round 3 onward, even under the Bayesian
model. The reason is that information from the periphery does not reach the core, as each core
agent observes only one peripheral neighbor and cannot aggregate across them. In such cases, where
aggregation fails despite all agents behaving myopically rationally under common knowledge, we say

that information aggregation is impeded by a structural friction.

Networks with Two Cores and a Few Bridging Links (Results 7, 8, 9 and in Section

of the Theoretical Appendix). Networks with two cores consist of two internally connected
cliques of equal size (5, with n even and greater than 4), connected by a small number of bridging
links. In the Two Cores with One Link network, a single bridging link connects agent ¢ from one
clique with agent j from the other; these two agents are the connectors. In the Two Cores with
Three Links network, three agents i1, 79,73 from one clique are each connected to a common agent j
in the other clique (agents i1, i2, i3, and j are the connectors).

Under the naive model, the dynamics follow directly from Lemma 6: from the second round
onward, agents follow the majority within their clique (with connectors potentially deviating in
round 2). This can lead to aggregation failures when, after the first round, the majority in one
clique is W while the majority in the other clique is B, even if a global majority exists.

Bayesian dynamics are more intricate. According to Proposition |, non-connectors imitate the

26Given our experimental parameters (n = 18, ¢ = 0.7), the probability of incorrect aggregation by myopic Bayesian

agents due to structural friction in the symmetric core—periphery network is approximately 2.35%.

2"Results 8 and 10 assume 5 is odd to avoid tie scenarios for non-connectors. Since we make no assumptions about

tie-breaking behavior, such ties may or may not mitigate local failures.
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connectors from the third round onward.”” Successful information aggregation thus hinges on the
connectors’ ability to communicate across cliques. However, communication becomes difficult when
signal distributions induce conflicting local majorities—precisely the cases where the naive model
fails. In such instances, a connector cannot fully convey the information regarding the signals
observed within her clique using only a binary action. Nevertheless, for the parameters used in
our experiment, we show that when connectors disagree in round 2, successful communication is
still possible—as long as agents correctly interpret the information conveyed by not switching (see
Section of the Theoretical Appendix for a detailed example).”” While we demonstrate that
successful aggregation is theoretically possible in such cases, it requires an extraordinary high level of
reasoning, even under common knowledge of rationality. We refer to these cases—where aggregation
is possible in the myopic Bayesian model but requires unusually elevated reasoning—as instances of
surmountable structural friction.

Finally, Two Cores networks are also susceptible to structural friction under Bayesian dynamics.
Consider the Two Cores with One Link network with n = 18. Suppose that three non-connectors in
each core and both connectors receive signal w, while the remaining agents receive signal b. The
connectors are indifferent in round 2. If both guess W, they will continue to do so in subsequent
rounds due to their agreement—Ileading to incorrect convergence despite rational behavior.

Table 2 summarizes predicted behavior in all seven networks studied in the experimental lab

under both the myopic Bayesian and the naive models.

4 Aggregate Analysis

This section analyzes the collective performance of subjects in aggregating dispersed private in-
formation across different network structures. We begin by describing the data (Section 1.1) and
introducing an aggregate learning indexr used to quantify information aggregation (Section .2).
We then use this index to examine how efficiently each network structure facilitates information
transmission as a function of the aggregate quality of the private signals and use it to evaluate the
performance of the Bayesian model (Section 1.3). Next, we assess the extent to which observed
aggregation failures can be attributed to the structural frictions defined earlier (Section 1.1). We
then turn to evaluate the performance of the naive model in predicting aggregate outcome (Section

). Finally, we examine the dynamics of the aggregation process, focusing on how long it takes for

learning to converge (Section 1.0).

Z8Proposition | does not apply to non-connectors in the clique containing 41, 2,43 in the Two Cores with Three
Links network. As shown in Result 9.2, if i1, i2, and i3 are unanimous in period ¢t — 1, then non-connectors follow
them in period t; otherwise, they infer indifference and guess randomly.

Gimilar dynamics of information exchange appear in ( ). However, in our
setting, communication is through binary actions rather than posteriors. Thus, the general results in

( ) do not directly apply. The proofs of Results 7 and 9 are specific to our experimental parameters.

30The probability of such a signal distribution is approximately 0.69%. Since we make no assumptions about

tie-breaking behavior, this is an upper bound on the likelihood of this type of structural friction. The corresponding
probability in the Two Cores with Three Links network is 0.98%.
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Network

Myopic Bayesian Model

Naive Model

Complete Always correct from ¢ > 2 (1). | Always correct from ¢t > 2 (1).
If the aggregator recieves
Star Always correct from ¢ > 3 (2). | the majority’s signal, most

are correct from t > 2.
Otherwise, indeterminate (3).

Connected Spokes

Always correct from ¢t > 3 (2).

Non-aggregators guess by

local majority from ¢t > 2.

The aggregator aggregates
their choices (1).

One Gatekeeper

Always correct from ¢t > 3 (2).

Non-aggregators in the core
choose by local majority from
t > 2. In most cases, the
others follow whether

correct or incorrect (9).

Symmetric Core Periphery

In most cases, the core
members aggregate only their
own signals. The leafs imitate
from ¢ > 3 (0).

In most cases, the core
members aggregate only their
own signals. Most leafs are
correct (0).

Possible Structural Frictions
If both cores agree, they follow
the agreed guess from ¢ > 2.
Possible Structural Frictions
Otherwise, slow convergence
to the correct guess (7, 9).
Possible Surmountable
Structural Frictions

Two Cores with One Link
and
Two Cores with Three Links

Agents guess by the majority of
their local core from ¢ > 2 (8, 10).

Table 2: Summary of Theoretical Predictions

Notes: Formal statements and proofs appear in Section I3 of the Theoretical Appendix and referenced throughout the

table in the parenthesis.

4.1 Data

We collected data from 410 games played across the seven network structures described in Section
(see Table

the majority of private signals did not match the true state selected by the computer, we redefine

for details). Our analysis follows three guiding principles. First, in the 10 games where

the state to align with the majority of signals (see Footnote 13 for discussion). Second, we exclude

games in which the number of each signal type is equal, since in such cases every guess is considered

correct by definition. Third, we exclude games where participants failed to converge—defined as

cases in which at least one participant continued to revise their guess beyond round 50 (see Footnote
). These two exclusions eliminate 48 of the 410 games (11.7%).

We refer to signals that match the majority of all signals in the network as correct, and those
that do not as incorrect (or wrong). To capture the informativeness of the initial signal distribution
at the network level, we categorize each game into one of three signal-quality levels: weak, average,
or strong. Specifically, we label games with weak signals as those in which 10 or 11 participants

receive correct signals; games with average signals as those in which 12 or 13 participants receive

31The results are robust to the inclusion of games in which the group reached round 50 (available from the authors
upon request).
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correct signals; and games with strong signals as those in which at least 14 participants receive
correct signals. This classification ensures a reasonably balanced distribution across signal categories:

22% of games begin with weak signals, 40% with average signals, and 38% with strong signals.

4.2 Defining a Measure of Information Aggregation

We use the term learning to refer to changes in participants’ posterior beliefs resulting from observing
others’ actions. In our design, we observe participants’ coarse actions rather than their beliefs, so
learning is not always directly observable. Indeed, we can only definitively state that a participant
has learned if they report a guess differing from their initial signal. We say a participant learns
correctly if they initially receive an incorrect signal but ultimately make a correct guess. In contrast,
incorrect learning occurs when a participant initially receives a correct signal but ultimately reports
an incorrect guess. To evaluate how network structure affects information aggregation, we construct
an aggregate learning index (ALI), which captures these observable instances of learning.
Definition. For each game g, let C'SY denote the number of correct signals and 159 denote
the number of incorrect signals (CSY+1SY equals the network size in game g). For every round ¢ in

game g, let CG{ denote the number of correct guesses submitted. Then, we define:

COLOS 0GY > 89
ALY = 0 CGY=Cs8Y
e cal <o

The Aggregate Learning Index (ALI) is an intuitive measure of overall information aggregation
success in game g at the end of round ¢. Specifically, if the number of correct guesses in round
t exceeds the number of correct initial signals, ALI represents the net fraction of participants
who learned correctly relative to the total number of participants with incorrect initial signals.
Conversely, if the number of correct guesses falls below the number of correct initial signals, ALI is
negative and reflects the net fraction of incorrect learners relative to the total number of participants
with initially correct signals.

Importantly, ALI takes values in the interval [—1,1]. A value of 1 represents absolute information
aggregation: all participants with incorrect signals revise correctly, and those with correct signals
retain their initial signals. Conversely, a value of —1 indicates complete aggregation failure: all
participants with correct signals revise incorrectly, and no participant with incorrect signals updates.
When no participant deviates from their initial signal, ALI equals zero.

A notable property of ALI is its composition invariance. Consider two games, g and h, each with
18 participants. In both games, 12 participants initially receive correct signals (C'S9 = C'S" = 12)
and 6 receive incorrect signals (159 = IS" = 6). Suppose further that in round ¢, 14 correct guesses

occur in both games (CGY{ = CGP = 14). In game g, among the 14 correct guesses, 12 participants

32Gee ( ) for a similar index. ( ) introduce the “stability measure”: a related but
distinct index based on switching behavior.
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initially received correct signals, whereas in game h, only 8 initially received correct signals. Despite
1

these differences, in both games, the ALI equals 5. Thus, ALI provides a high-level measure of
learning outcomes, abstracting from detailed individual-level learning outcomes. One might argue,
however, that the extent of learning in game h is greater than in game g, because a higher fraction of
participants with initially incorrect signals learned correctly, even after accounting for participants
with initially correct signals who guessed incorrectly. To capture these individual-level differences,
we introduce a second measure, the individual learning index (ILI), which measures the success
of learning at the individual level. We define and discuss the ILI in Section of the Empirical
Appendix, provide the cumulative densities of ALI and ILI in Section and demonstrate that our

results remain robust when replacing ALI with ILI in Section

4.3 The Performance of the Bayesian Model

Figure 2 presents scatter plots of network-specific end-game ALIs as a function of the fraction of
correct initial signals for each network. The bubble size corresponds to the number of observations
with identical outcomes. In discussing empirical patterns exhibited in Figure 2, we focus on absolute
success and failure statistics in learning and on the relationship between the extent of learning and
the initial signal distribution.

We use the Complete network as the benchmark for our analysis, as it imposes no restrictions
on nodes’ connectivity and thus offers the greatest potential for aggregating dispersed private
information about the state of the world. Information aggregation is not absolute even in the
Complete network, but it features two important properties. First, participants in the Complete
network almost always learn correctly, in aggregate.”” Second, the rate of aggregate correct learning
responds positively and monotonically to the quality of initial signals (i.e. games with stronger
signals achieve higher end-game ALIs).

Figure 2 provides a natural partition of the non-complete networks we studied. The first group
consists of networks in which ALI responds positively and monotonically to signal quality, while in
the second group, no such association is found. This difference maps clearly onto the two structural
features discussed in Section . The first group—mnetworks where ALI and informativeness
positively correlate—comprises the Symmetric Core Periphery network, the Two Cores with One
Link network, and the Two Cores with Three Links network. Each of these networks features one or
two cliques of 9 nodes; we label them Cluster(s) networks. The second group—networks where ALI
and informativeness do not positively correlate—comprises the Star network, the Connected Spokes
network, and the One Gatekeeper network. Each has a single node connected to all others; we label
these Single Aggregator networks. Although the One Gatekeeper network features both a central
node and a size-9 clique, it is clearly insensitive to the distribution of initial signals, behaving like

the other Single Aggregator networks rather than the Cluster(s) networks.

33We observed only one game (out of 46) in which most participants converged to the minority signal (the only dot
below the zero horizontal line in the Complete network diagram in Figure 2). The initial distribution of signals in that
case was 10-8.
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Figure 2: Aggregate Learning Indices, by network

Notes: The fraction of correct signals is on the horizontal axes. The final round ALI is on the vertical axes. The size
of the bubble corresponds to the number of observations. The straight lines are the linear fit. The p-value reports the
test for the null hypothesis that the slope of the linear fit equals zero against a one-sided, positive, alternative in a

regression using clustered standard errors at the session level.

Given the stark differences between the two groups, and consistent with our focus on network
architectural features’ effects on information aggregation, much of the analysis below pools data
from networks within each group. We compare the performance of Cluster(s) and Single Aggregator
groups against each other and against our benchmark, the Complete network.

Figure 2 also shows that absolute aggregation success (ALI = 1), while predicted by the Bayesian
model in most cases, is rarely achieved in practice. Moreover, aggregation failures are fairly common.
We define a complete failure of information aggregation as a case in which a majority of participants
make incorrect guesses in the final round. A relative failure of information aggregation occurs when
the final-round ALI is negative. Relative failure is a necessary but not sufficient condition for
complete failure. Panel A in Figure 3 reports the frequency of both types of failures, as well as
absolute success, for each network.”” Consistent with our observations above, panel A highlights two

patterns. First, while relative or complete information aggregation failures occur almost never in the

34 ( ) report an absolute aggregation rate of 70% for a complete network of size 5, and
46.5% for a star network of the same size. ( ) find 27% absolute aggregation in networks of
size 7 that the myopic Bayesian model predicts will reach consensus on the correct state. Figure 3c in

( ) shows a 26% relative failure rate and no instance of absolute aggregation in networks of size 40.
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Panel A: Failure Rates and Absolute Aggregation Panel B: Final Guesses as a function of Signals’ Quality
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Figure 3: Rates of Information Aggregate Successes and Failures, by Network

Notes: Panel A reports the frequency of relative information aggregation failures (ALI < 0) in the second column;
the frequency of complete aggregation failures (the final majority guess is incorrect) in the third column; and the
frequency of absolute aggregation success (ALI = 1) in the fourth column. Panel B presents, on average by network
structure, a scatter plot showing the share of correct final guesses as a function of the percentage of correct private
signals, grouped by signal quality: weak, average, and strong (as defined in Section 4.1). The legend is placed in the

right-most column of Panel A.

Complete network, these failures do occur in significant proportions in both Single Aggregator and
Cluster(s) networks. Second, absolute aggregation of information is rare in all networks, including
the Complete one. Panel B in Figure 3 presents a scatter plot showing the average share of correct
final guesses as a function of the percentage of correct private signals, grouped by network structure
and signal quality. Panel B of Figure 3 and Figure 2 further illustrate that Cluster(s) networks
frequently fail when initial signals are weak, whereas Single-Aggregator networks perform relatively
poorly in cases with strong initial signals, compared to other network structures.

Before we explore the performance of Naive model, we show that structural frictions cannot

account for the observed information aggregation failures.

4.4 Structural Frictions

Recall from Section 3 that we define a structural friction as a situation in which information
aggregation fails even under common knowledge that all agents are myopically Bayesian. We
also introduced the notion of a surmountable structural friction: a case in which aggregation is

theoretically possible under these same assumptions but requires unusually sophisticated reasoning.

35By Table 3 in ( ), they study one case of structural friction (Kite 1) and two cases of
surmountable structural frictions (Circle 2 and Kite 2).
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Figure 4: Structural Failures

Notes: The figures on the left plot end-game ALIs in the Symmetric Core Periphery and One Gatekeeper networks as
a function of the number of correct signals in the core. The figures on the right plot end-game ALIs in the Two Cores

with One and Three Links networks as a function of the alignment of majority signals across the two cliques.

The results in Section show that in Cluster(s) networks, certain signal distributions give rise to
both types of frictions. We next examine the extent to which these structural frictions account for

the aggregation failures documented in Figures 2 and

One Gatekeeper vs. Symmetric Core Periphery Both networks feature a completely con-
nected core and a periphery in which each node connects to a single core member. The only
structural difference lies in the periphery’s pattern of connections: in the Symmetric Core Periphery
network, each peripheral node connects to a different core member; in the One Gatekeeper network,
all peripheral nodes connect to the same core member—the “Gatekeeper.” Section predicts
no structural failures for the One Gatekeeper network, but identifies potential frictions in the
Symmetric Core Periphery network when the core’s majority is either narrow or incorrect. Panel
A of Figure 4 shows that average ALI in the One Gatekeeper network is largely insensitive to the
signal distribution in the core. In contrast, average ALI in the Symmetric Core Periphery network

increases with the number of correct signals in the core—as predicted by structural considerations.

The Two Cores Networks In the Two Cores networks, Section predicts that aggregation is

straightforward when both cliques have the same majority signal, although errors can still occur
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with low probability. However, when the majority signals in the two cliques conflict, aggregation
becomes extremely difficult: success may require multiple iterations of complex inference by the
connectors, without switching. Panel B of Figure 4 confirms this prediction—especially for the Two
Cores with One Link network—showing that aggregation often fails when the two cliques’ majority

signals are misaligned.

Not the Whole Story The cases discussed above demonstrate that some network structures are
prone to aggregation difficulties for specific signal distributions due to structural frictions. This
is the case for weak and average signals in some of the Cluster(s) networks (panel B in Figure

). However, the myopic Bayesian model does not predict any such difficulties in the Complete or
Single Aggregator networks: these networks are expected to aggregate information fast regardless of
the signal distribution (Section 3.1). However, Figure 2 and Panel B in Figure 3 reveal systematic
deviations from this prediction: Single Aggregator networks often fail to aggregate information even
when initial signals are average or strong. We, therefore, conclude that while structural frictions
explain some failures, they cannot fully account for the observed performance. We propose that the
remaining failures stem from behavioral frictions that interact with network architecture and signal

distributions. In the remainder of the paper, we explore these behavioral frictions.

4.5 The Performance of the Naive Model

As discussed in Section 3.4, the network-level predictions of the naive model differ substantially
from those of the myopic Bayesian model. In particular, the naive model rarely predicts absolute
aggregation. This is largely because leafs and small cohesive groups often struggle to learn the true
state under naive updating. An exception is the Complete network, where both models predict
absolute aggregation, yet subjects’ actual performance falls short of this benchmark (see Section

).

Because the naive model often yields indeterminate predictions, we test a key feature of its
behavior: that clique members with limited external connections should converge early and never
revise their guess. This prediction, formalized in Lemma 6 (Section A of the Theoretical Appendix),
states that such agents should adopt the round-1 local majority from period 2 onward and stick to
it.

To test this implication in its most obvious form, we focus on clique members with no links
outside their clique. In the networks we study, these agents should behave according to Lemma 0,
using the local majority of round-1 guesses to determine their actions in all subsequent rounds.
Specifically, we examine four groups of such positions: (i) non-aggregators in the Connected Spokes
network, (ii) non-aggregator clique members in the One Gatekeeper network, (iii) non-connectors in
the Two Cores with One Link network, and (iv) non-connectors in the Two Cores with Three Links
network. For each case (excluding ties), we compute the local majority after round 1 and check
whether the subject followed it consistently thereafter.

In total, we identify 2,769 relevant instances. In 68.3% of them, subjects adhered to Lemma
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Figure 5: Evolution of ALI as the Game Progresses

Notes: The figure presents the average ALI per round, across network groups and signal quality. For readability, we
present the 95% confidence intervals only for the network group that most differs from the others, using clustered
standard errors at the session level. The reported p-values use these clustered standard errors to evaluate the null
hypotheses that the most different group’s mean ALI differs from the other groups’ ALIs in round 20. As there are no
noticeable movements beyond round 20, the horizontal lines end there. See Section of the Empirical Appendix for

robustness analysis.

Adherence was highest among non-connectors in the Two Cores with One Link (75.6%) network, and
lower among non-connectors in the Two Cores with Three Links (68.3%) network, non-aggregators
in the Connected Spokes (63.9%) and One Gatekeeper (60.5%) networks. Given that the initial
signal is correct in approximately 70% of cases, these adherence rates are modest, at best. This
means that these participants exhibit very low rates of local information aggregation.

Taken together—the fact that a significant fraction of subjects violate a clear implication of the
naive model, and the surprisingly poor performance in the Complete network—we conclude that
relying solely on local neighborhood information does not provide an adequate explanation for the

aggregate behavior observed in the experiment.

4.6 Dynamics

Figure 5 shows how ALI evolves over rounds, separately for games with weak, average, and strong
initial signals. When signals are not weak, the Complete network reaches an ALI of around 0.5 as
early as round 2. When signals are weak, it still achieves an ALI of approximately 0.3 by round 2.

In both cases, performance improves slightly in subsequent rounds. The Cluster(s) networks perform
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poorly when signals are weak but improve markedly with signal quality, eventually matching the
Complete network when signals are strong. By contrast, the Single Aggregator networks perform
similarly to the Complete network when signals are weak but fail to improve as signal quality
increases.

Another key insight from Figure 5 is that the first three rounds largely determine the aggregate
outcome. ALI stabilizes early, with minimal change after round 3 (see ( )
and ( ) for similar observations). This motivates us to focus the positional-level

analysis on behavior during the first three rounds.

4.7 Summary

First and foremost, our analysis establishes that network structure has a profound effect on long-run

outcomes, and that this effect depends critically on the quality of initial information. In particular:

Finding 1. The Complete network aggregates information better than all other networks. However,

it does not perform as perfectly as both theories predict.

Finding 2. Single Aggregator networks perform on par with the Complete network when initial
information is poor, but fail to improve as information quality increases. As a result, they frequently
fail to aggregate information even when the vast majority of signals are correct. Single Aggregator

networks perform significantly worse than predicted by theory.

Finding 3. Cluster(s) networks respond positively to signal quality and match the Complete network’s
performance when initial signals are strong. However, when signals are weak, they often fail to
aggregate information—consistent with the theory-based notions of surmountable and insurmountable

structural frictions.

Finding 4. Relying solely on local neighborhood information, as advocated by the naive model, does

not provide an adequate explanation for the observed aggregate behavior.

Finding 5. Behavior in the first three rounds is decisive for determining network outcomes.

5 Positional Analysis

In this section, we study individual behavior by position in the network. Following Finding 5 we

focus on the first three rounds. Our benchmarks are the behaviors predicted by the Bayesian model

36Section of the Empirical Appendix evaluates a myriad of regression specifications to test for differences
between the final round learning index value between the different types of network. The results in most specifications
comparing the Complete network with Cluster(s) networks and the Complete network with Single Aggregator networks
demonstrate a statistically significant contrast. The contrasts between the Single Aggregator and the Cluster(s)
networks are less clearly significant, especially with substantial controls absorbing the variation in learning index
values.

37 ( ) also restrict their individual-level analysis to the first three periods. Their justification
differs from ours: “from period 4 onward, most networks enter a zero-probability information set—that is, at least one
agent observes behavior that cannot be reconciled with either Bayesian or Naive reasoning” (p. 23).
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Single Aggregator networks Cluster(s) networks
Complete | Star  Connected One Core Two Cores Two Cores
Spokes Gatekeeper | Periphery One Link Three Links

All nodes 92% 93% 92% 91% 94% 92% 91%
Aggregators 91% 94% 94%
Cluster members 92% 92% 90% 94% 92% 92%
Leafs 93% 92% 95%
Connectors 90% 88%

Table 3: First-round guesses, by network and position

Notes: Frequency of “correct” first-round guess is reported, where correct indicates a guess coinciding with one’s
private signal. Aggregators are the unique nodes in the network that are connected to all other nodes. Cluster
members are members of a clique of size at least 3 that are not connected to nodes outside the clique. Leafs are nodes
with a single link. Connectors are the nodes in the two cores networks that maintain cross-clique links (see Table 9 in

Section of the Empirical Appendix for a detailed classification).

and by the naive model as described in Section

Throughout this section, we employ regression analysis to examine heterogeneity in participants’
behavior as a function of their local information environment. To account for differences in aggregate
information distributions and network structures, we include session-game fixed effects. Standard

errors are clustered at the individual level to account for within-subject correlation across games.

5.1 First Round Guesses

Both the Bayesian model and the naive model predict that the first guess should reveal one’s private
signal since it is correct with probability 70% conditional on the state (Lemma | and Definition 1).
Moreover, we believe that reporting one’s own signal indicates a basic understanding of the game
and its reward scheme. First-round guesses match their signals in 92.2% of the cases.”” Table
reports these rates by network and by position. Importantly, there is little variation in the tendency
to report one’s own signal in the first round of a game across network structures and network
positions.

Across ten games within a session, 72.5% of participants report their signal as their first guess
in all ten games, and 91.2% misreport at most twice. More than 40% of the misreports (210 out
of 510) were made by subjects that misreport at most twice. This suggests that most misreports
reflect random “trembling hand” errors rather than strategic considerations or misunderstanding of

the game."’ At the group level, in 94.2% of games with an initial signal imbalance that converged,

38 ( ) report a first-round mistake rate of 5.8% in networks of size 3. ( )
report rates of 3% and 6% in their 2-urn treatments with 5 and 7 agents, respectively. ( ) report a
first-round mistake rate of 1.7% in networks of size 7.

39The Symmetric Core Periphery Network sessions had participants’ first-round reports match their signals in 94%
of cases, a small difference that proves to be statistically significant even after clustering and multiple-comparison
adjustments. None of the other network types showed pairwise differences that were statistically significant. Further,
there were no statistically significant differences in the frequency with which the first guess matched a subject’s signal
by its position in the network. See Section of the Empirical Appendix for further details.

49 Almost half (45.2%) of the subjects that misreported at least three times in the first round are classified as
probability matchers (see Section of the Empirical Appendix).
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Benchmark Single Aggregator networks Cluster(s) networks
Complete Star Connected One Gatekeeper | Symmetric Core ~ Two Cores Two Cores
Spokes Periphery One Link Three Links

Overall 87% 79% 88% 7% 87% 84% 82%

maj min maj min maj min maj min maj min maj min maj min
All nodes 98% 62% | 97% 48% 95% 54%  96% 35% 95% 58% 95% 57% 94%  54%
Single Aggregators 97%  48% 91% 61% 100% 59%
Cluster members 95% 53%  95% 31% 95% 58% 95% 56% 95% 52%
Connectors 97% T1% 90% 65%

Table 4: Second-round guesses, by network and position

Notes: The average frequency of “correct” guesses is reported for all nodes with two or more local friends. Columns “maj” and
“min” refer to cases in which a participant’s first round guess is part of round 1 local majority or minority, respectively. The
round 2 guess is considered “correct” if it matches the local round 1 majority taking into account the participant’s own round 1
guess. Leafs are excluded, as they err only if guessing against their signal when their neighbor’s guess matches it. In addition,
we exclude local ties, where a tie is also defined relative to one’s first round guess. Section of the Empirical Appendix

reports similar results under different definitions of the “correct” round 2 guess and minority status.

misreports did not alter the majority signal.

Finding 6. Subjects tend to report their private signals in the first round of the game. Mistakes

are relatively rare and are not systematic across network structures or network positions.

5.2 Second Round Guesses

As we saw, most subjects truthfully report their private signal in the first round of a game, and those
who do not have no particular bias. Hence, the predicted second-round behavior, both for Bayesian
agents and for naive agents, entails reporting the majority of first-round guesses one observes in her
local neighborhood augmented by their own signal (Lemma 3 and Definition 1). If there is an equal
number of guesses of each color, then the subject should be indifferent.

Table 4 documents the frequency with which subjects guess “correctly” in round 2 conditional
on whether their first-round guess aligns with the majority of first-round guesses in their local
neighborhood. This analysis focuses on nodes with at least two local neighbors (i.e., excluding
leafs) and omits cases where local ties occur. Subjects whose first-round guess agrees with the local
majority in the first round make a correct guess in round 2 almost always (90% or more), regardless
of their network position. In contrast, when their first-round guess contradicts the first-round local
majority, the probability of a correct guess in round 2 varies substantially across network structures,

ranging from 31% for cluster members in the One Gatekeeper network to 71% for connectors in the

41The 21 cases in which first-round misreports reverse the majority signal account for only 18.6% of the relative
failures and 23.7% of the complete failures of information aggregation documented in Panel A of Figure

420ur theoretical analysis does not impose a tie-breaking rule. In the experiment, ties occurred in 1,287 second-round
decisions (17.4%), with about 75% involving leaf nodes. In 75.37% of tie cases, subjects repeated their first-round
guess. This fraction is similar if we instead measure tie-breaking relative to the subject’s initial signal rather than
their first-round guess (74.27%).
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Two Cores with One Link network.

First Behavioral Friction: Under-Reaction to New Information. The Bayesian model
predicts that in round 2, all agents should optimally switch their guess to the majority guess from
round 1. Furthermore, under the naive model, subjects are expected to adopt the majority guess
from round ¢ —1 as their guess in round ¢ (¢ > 1). However, the behavior observed in Table /| deviates
from the predictions of both the Bayesian and naive models. Instead, the behavior appears to be
consistent with the well-documented behavioral bias known as under-reaction to new information.
In our setting, the new information consists of the first-round guesses of a subject’s direct neighbors,
which become observable only at the end of round 1. The under-reaction bias manifests when
subjects recognize that the majority of their direct neighbors received a signal different from their
own—based on their round 1 reports—but nonetheless fail to switch to the majority signal as
frequently as would be expected.

This behavior is hardly surprising as under-reaction to new information is one of the more
stable and well-documented empirical deviations from Bayesian predictions. ( )
find that subjects who exert effort to uncover information overweight their private signals relative
to their partner’s, which they interpret as an ownership effect. ( ) show that
subjects overweight private signals relative to group-level information. ( )
use the cognitive imprecision model of ( ) and find under-reaction with precise
signals and over-reaction with weak signals. ( , ) combine noisy cognition and
representativeness, predicting under-reaction when the state space is simple, signals precise, and
priors flat, and over-reaction when the environment is more complex, signals noisier, and priors
more concentrated. The environment in our experiment aligns with conditions predicted to generate
under-reaction in both ( ) and ( , ) models.

Table 5 uses a linear probability model to analyze under-reaction in round 2 as a function of
local environment and network position. The dependent variable equals 1 if the round 2 guess
matches the local round 1 majority; the key regressor indicates whether the individual was in the
round 1 minority. Additional controls capture the extent of local consensus in round 1, network
position, and individual characteristics.

The first regression shows that being in the local majority in round 1 is associated with a 94.8%
probability of making a correct guess in round 2. Belonging to the minority reduces this probability

by approximately 40 percentage points, across networks and positions. The other regressions add

43 ( ) study networks of size 3 with signal accuracy % In their full information treatment, subjects in
the complete network were incorrect in round 2 in 13% of cases, while aggregators in the star network were incorrect
in 11.1% of cases. ( ) study networks of size 40 with signal accuracy 0.7 and report that approximately
20% of subjects switched their guesses between the first and second rounds. In addition, their Table EC.4 reveals that
10%-12% of the subjects were incorrect in at least one of the first two rounds. Neither study considers whether a
subject was in the majority or minority at the end of round 1.

41 An extreme form of Under-Reaction to New Information is to adhere to one’s initial private signal throughout
the game—a behavior often labeled “stubbornness” in the social learning literature. ( ) report in their
supplementary material that 25%-30% of their subjects exhibit such behavior. In our data, the rate of stubbornness
ranges from 3% to 16%.

45See the surveys by ( ), ( ) and Section 6.2.1 in ( ).
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Dependent Variable: Correct Round 2 Guess
All Non-Leaf Nodes
Baseline  First Order Interaction  Interactions

Model Model Model with Controls
Constant 0.948*** 0.953*** 0.942%** 0.923%**
(0.00499) (0.0269) (0.0274) (0.0322)
Minority Characteristics
In R1 Minority -0.396***  _0.414%** -0.358*** -0.346%**
(0.0190) (0.0200) (0.0475) (0.0468)
Local Minority Size -0.175%** -0.0416 -0.0331
(0.0495) (0.0465) (0.0459)
In R1 Minority -0.820%** -0.819***
x Local Minority Size (0.127) (0.126)
Node Characteristics
Node Degree Centrality 0.0935* 0.0401 0.0310
(0.0488) (0.0498) (0.0493)
Node Degree Centrality 0.278%** 0.288%**
x In R1 Minority (0.0762) (0.0747)
Individual Controls
Incorrect Round 1 Guess -0.120%**
(0.0305)
Gender 0.00885
(0.0123)
Probability Matching -0.0493%**
(0.0149)
Risk Aversion 0.0505%*
(0.0255)
R-squared 0.243 0.245 0.262 0.275
# of Observations 4,310 4,310 4,310 4,310
# of Clusters 756 756 756 756
# of Session-Game Fixed Effects 359 359 359 359

* p<0.05, ** p<0.01, *** p<0.001. Standard errors in parentheses

Table 5: Determinants of Second-Round Guesses

Notes: These are linear regressions with clustering at the participant level including session-game fixed effects. The sample
includes only nodes with two or more neighbores and excludes local ties. In R1 Minority is an indicator that equals one when
R1 guess was not the most popular in one’s local neighborhood in the first round. Local Minority Size is the percentage of
the local minority in the neighborhood. Node degree centrality is calculated as the number of neighbors divided by the largest
number of neighbors one can have in our networks (17). Individual controls include the risk attitude measure, the probability
matching measure, the indicator of submitting a wrong guess in the first round, and gender. Section of the Empirical
Appendix presents robustness checks for different regression model specifications.

two insights. First, for minority members, minority size is negatively correlated with correctness:
large minorities double the adverse effect (minority size ranges from 0 to %). Second, the negative
impact of being in the minority is partially mitigated by large neighborhood size. That is, more

connections help minority members better incorporate new information.

Finding 7. Across networks and positions, participants imperfectly aggregate local information in
round 2, systematically under-reacting to neighbors’ first-round guesses when in the local minority.
The extent of under-reaction depends on the strength of the observed evidence, determined by

neighborhood size and majority-minority composition of their local neighborhood.
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Single Aggregator networks Cluster(s) networks
Star Connected One Symmetric Core Two Cores Two Cores
Spokes Gatekeeper Periphery One Link Three Links
same diff | same diff | same diff | same diff same diff | same  diff
Leafs 94%  46% 96%  43% | 97% 60%
Cluster members 97%  36% | 95% 29% 97%  21% | 96%  25%

Table 6: Third-round imitation frequencies, by position and agreement with the influencer in R2.

Notes: We report how often a leaf’s or cluster member’s round 3 guess matches their influential friend’s round 2 guess
in cases where imitation is optimal. We distinguish between cases where their own round 2 guess agrees with the

influential neighbor’s (column “same”) and where it differs (column “diff”).

5.3 Third Round Guesses

The third round is the first stage at which subjects can incorporate information from network
members to whom they are not directly connected. In the naive model, this occurs mechanically:
third-round guesses reflect the second-round guesses of direct neighbors, which were themselves
shaped by the first-round guesses of more distant agents. In the Bayesian model, players should
begin to exploit the network structure through sophisticated inference to refine their guesses. In
practice, as shown in Finding 5, most information aggregation is completed by the end of the third
round, making it a particularly important stage to analyze.

In Section , we introduced the heuristic termed imitation: agent ¢ imitates agent j if
VE>2:al = a7t
optimally imitate a neighbor—specifically, the unique neighbor j who is strictly better informed than
agent ¢ and all i’s other neighbors (agent k is better informed than agent [ if B(1)U{l} C B(k) U {k}).

Section

Proposition | identifies network positions where Bayesian agents should

applies this result to the networks we study. In Single Aggregator networks, all non-
aggregators should imitate the aggregator (Result 2). In the Symmetric Core Periphery network,
each leaf should imitate its core neighbor (Result ). In the Two Cores with One Link network,
non-connectors should imitate their connector (Result 7). Finally, in the Two Cores with Three
Links network, non-connectors in the core with a single connector should imitate that connector,
and those in the core with three connectors should imitate whenever the connectors’ prior-round
guesses are unanimous (Result V). We refer to the agent who should be imitated in these cases as
the Influencer.

Table

where Bayesian agents should optimally imitate. When players agreed with the influencer in round

reports how often subjects’ behavior aligns with imitation of the influencer in cases

2, they typically maintained the same guess in round 3 (94%-97% across networks). However, when
subjects disagreed with the influencer in the second round, they frequently persisted with their
round 2 guess rather than switching. Notably, players with smaller local networks (especially leafs)

were more likely to imitate the influencer following disagreement.

Table

to optimally imitate their influential neighbors following disagreement in round 2—a pattern we

Second Behavioral Friction: Under-Imitation. shows that subjects frequently fail
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refer to as under-imitation. This behavior is consistent with findings from sequential social learning
experiments, where subjects tend to under-imitate predecessors when doing so requires acting
against their private signal ( ( ); ( ).

Although both under-imitation and under-reaction to new information involve a failure to switch,
they are conceptually distinct. Imitation requires a more sophisticated understanding of the network:
to decide whether to imitate a neighbor, a subject must consider not only the neighbor’s action but
also their position in the network, including the connectivity of their neighbors. In contrast, reacting
to new information depends solely on the agent’s immediate environment. The two behaviors also
differ in cognitive demands: imitation involves mechanically copying a neighbor’s previous guess
(in every period), while responding to new information typically requires a one time computation,
such as counting. More broadly, learning can be motivated either by a desire to access others’
private signals or by the belief that someone else is better equipped to interpret the environment.
Under-reaction reflects a failure of the former—insufficient use of others’ private information—while
under-imitation reflects a failure of the latter, namely, the inability to recognize that a neighbor may
be better informed about the state of the world (see ( )). Finally, Table ¢ and Finding

highlight a key empirical difference between these two frictions. While the under-reaction to
new information friction weakens as local neighborhood size increases, the under-imitation friction

appears to intensify when local neighborhoods are large.

Can Under-Imitation Be Rational? While we have established that the two behavioral frictions
are distinct, it remains possible that under-imitation is an optimal response to the under-reaction
to new information. To evaluate this hypothesis, consider a Single Aggregator network with n
participants.”” Assume that (i) n is even ; (ii) every non-aggregator i has at most § — 1 direct
neighbors, i.e., b(i) < 3,
ij ¢ E, or they share exactly the same set of neighbors, that is, B(i)\{j} = B(j)\{i}. Note that
the Star, the Connected Spokes and the One Gatekeeper networks satisfy these properties. Property

and (iii) every two non-aggregators ¢ and j are either not linked, i.e.,

(i) introduces ties, property (ii) guarantees non-aggregators never know the majority of private
signals for sure already after the first round and property (iii) guarantees that the second round
guesses of non-aggregators add no information to their neighbors. Following Findings 6 and 7 and
Footnote 12, assume, in addition, that (iv) all subjects guess correctly in the first round, (v) the
aggregator, denoted by A, never switches in the second round when her private signal coincides
with the majority of first round guesses, (vi) the aggregator does not switch in the second round
when her private signal coincides with the minority of first round guesses with probability « € (0, 1],
and (vii) the aggregator does not switch in the second round when there is a tie in the first round
guesses with probability 5 € [0, 1].

Whenever the aggregator switches between round 1 and round 2, their second round guess is
surely correct, therefore, in these cases, imitation is optimal. If the aggregator does not switch

it might be that her private signal coincides with the majority of first round guesses or there is

46We focus here on Single Aggregator networks since the Complete network is not expected to exhibit imitation
and the Cluster(s) networks suffer from structural frictions that may over complicate the discussion (see Section .1).
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a tie (and then imitation is optimal) or, alternatively, that her private signal coincides with the
minority of first round guesses and she decided not to switch (maybe due to under-reaction to new
information concerns). When no switch is observed, a Bayesian non-aggregator agent ¢ uses the
b(i) + 1 first round guesses she observed and the fact that the aggregator did not switch, to evaluate
the conditional probability that the aggregator’s second round guess is incorrect. Claim | shows
that doubts should emerge only if the aggregator was within agent ¢’s local minority in the first

round. The claim’s proof is relegated to Section of the Theoretical Appendix.

Claim 1. A Bayesian non-aggregator agent i imitates agent A if either (i) the aggregator switched
between round 1 and round 2, i.e., a}4 # a124, or (ii) the aggregator did not switch, and their initial
guess was not in the first-round minority within agent i’s local neighborhood, i.e., a'y = a% and
|7 € B(i)U{i}|s(j) =s(A)| > |7 € B(i)U{i}|s(j) # s(A)|. If the aggregator did not switch between
round 1 and round 2 and their initial guess was in the first-round minority within agent i’s local

neighborhood, then there exist values of a and B for which imitation is not optimal for agent 1.

Clearly, the aggregator can never be in the local minority of a leaf, so leaf agents should always
imitate. Thus, the star network should not exhibit any under-imitation. In Section of the
Theoretical Appendix, we compute the minimal values of o that make imitation suboptimal in the
Connected Spokes and One Gatekeeper networks. These values depend on the non-aggregator’s
position, the size of the local minority, and 5. Using the empirical values of « and 5,”" we find
that imitation is always optimal in the Connected Spokes network. In the One Gatekeeper network,
imitation is optimal when at least two non-aggregators in the clique guessed like the aggregator
in round 1. Therefore, under the empirical values of @ and 3, the only case in which imitation is
not optimal for Bayesian non-aggregators in single aggregator networks is when all of the following
hold: the agent is a clique member in the One Gatekeeper network, the aggregator does not
revise their guess between rounds 1 and 2, and at most one other clique member guessed similarly
to the aggregator in round 1. Hence, the theoretical prediction implies extremely low rates of
under-imitation—yet observed rates in the laboratory are substantially higher. We conclude that
under-imitation cannot be explained as a rational Bayesian response to under-reaction to new

information.

Regression Analysis of Imitation Table 7 analyzes the determinants of third-round imitation,
incorporating subjects’ type, their agreement with the influencer in round 2, the influencer’s behav-
ioral change between rounds 1 and 2, and features of the local environment. Regressions (4)-(6)
examine imitation behavior separately by position: leafs, cluster members in Single Aggregator
networks, and cluster members in Cluster(s) networks. Regressions (1)-(3) pool all positions to
exploit variation in the ratio of the subject’s local neighborhood size to that of the influencer—a

variable omitted from the position-specific regressions due to limited within-group variation.

4"In the data, o = 43.5% for the Connected Spokes network and o = 45% for the One Gatekeeper network.
B = 75% for the Connected Spokes network. Since we observe no single aggregators facing ties after the first round in
the One Gatekeeper network, we set here 8 = 75% as well (also consistent with Footnote 42).
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Dependent Variable
Round 3 guess matches round 2 guess of the influencer
Regression Number (1) (2) (3) (4) (5) (6)
Network Type All Networks All Networks | Single Aggregators — Cluster(s)
Node Types Included leafs leafs leafs leafs
clusters clusters clusters clusters clusters
Constant 0.928%** 0.931%** 0.943%** 0.882%** 0.981%** 0.964%**
(0.0186) (0.0187) (0.0257) (0.0327) (0.0302) (0.0257)
Individual Controls
Gender 0.0155 0.0155 0.0188 0.0474%** -0.0133 0.00315
(0.0115) (0.0115) (0.0115) (0.0207) (0.0197) (0.0147)
Probability Matching -0.0603***  _0.0603***  -0.0548*** -0.0919%** -0.0547** -0.0193
(0.0140) (0.0140) (0.0140) (0.0276) (0.0216) (0.0196)
Risk Aversion 0.0502** 0.0506** 0.0469** 0.0514 0.0711 0.0212
(0.0240) (0.0241) (0.0238) (0.0413) (0.0437) (0.0303)
Incorrect R1 Guess -0.105%** -0.105%** -0.106%** -0.129%** -0.0453 -0.133%**
(0.0188) (0.0188) (0.0189) (0.0312) (0.0314) (0.0333)
Influencer Round 2 Status
Disagree with Influencer -0.591%%* -0.588%** -0.511%%* -0.478%** -0.730%** -0.824%**
(0.0194) (0.0223) (0.0296) (0.0310) (0.0371) (0.0311)
Influencer Switch R1 to R2 -0.000420 -0.00696 -0.0483%* -0.0265 -0.0487** 0.00900
(0.0104) (0.0110) (0.0188) (0.0208) (0.0194) (0.0141)
Disagree with Influencer 0.0819%** 0.0675%* 0.160*** 0.111%%* 0.166*** -0.0840%*
X Influencer Switch (0.0308) (0.0326) (0.0458) (0.0493) (0.0558) (0.0473)
Minority Status
In R2 Minority -0.0402* -0.0440%* -0.0764%** -0.0663
(0.0237) (0.0234) (0.0286) (0.0406)
In R2 Minority 0.0196 0.106*** 0.141%%* 0.271%%*
x Disagree with Influencer (0.0362) (0.0361) (0.0497) (0.0636)
In R2 Minority 0.0718* 0.122%** 0.117%* 0.0639
x Influencer Switch (0.0411) (0.0398) (0.0522) (0.0772)
Network Features
Ratio -0.0465
(0.0491)
Ratio x Influencer Switch 0.0731%*
(0.0289)
Ratio -0.317%%*
x Disagree with Influencer (0.0519)
Ratio x Influencer Switch -0.314%%*
x Disagree with Influencer (0.0902)
R-squared 0.432 0.433 0.451 0.322 0.500 0.623
# of Observations 4,521 4,521 4,521 1,933 1,292 1,296
# of Clusters 721 721 721 360 244 237
# of Session FEs 36 36 36 18 12 12

Table 7: Determinants of third-round imitation

Notes: All regressions are linear, with standard errors clustered at the participant level and session fixed effects included. Regs
(1)-(3) use a pooled sample of all non-aggregators in the Single Aggregator networks, leafs in the Symmetric Core—Periphery
network, and non-connectors in the Two Cores networks. Reg (4) includes leafs in the Star, One Gatekeeper, and Symmetric
Core-Periphery networks. Reg (5) includes cluster members in the Connected Spokes and One Gatekeeper networks. Reg
(6) includes non-connectors in the Two Cores networks. Disagree with influencer is an indicator for whether the subject’s
round 2 guess differs from their influencer’s round 2 guess. Influencer switch indicates whether the influencer changed their
guess between rounds 1 and 2. In R2 minority indicates whether the subject’s round 2 guess was not the local majority in
their neighborhood. Ratio is defined as the number of the subject’s direct neighbors divided by the number of the influencer’s
direct neighbors. Individual controls include the risk attitude measure, the probability matching indicator, the indicator of

sub-optimal first round guess, and gender. Robustness checks are reported in Section of the Empirical Appendix.

The regressions in Table 7 yield several notable findings. Throughout the analysis we focus on sub-

jects who, under the Bayesian model, are expected to imitate their influential neighbor—specifically,
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those who are not probability matchers and that guessed correctly in round 1. First, by regression
(1), when these subjects agree with the influencer in round 2, they maintain their guess in 92.8% of
cases, consistent with imitation. However, when imitation requires switching—i.e., when their round
2 guess differs from the influencer’s—imitation drops sharply to 33.7% (assuming the influencer
submitted the same guess in round 1 and round 2). We identify three main factors that shape the
extent of this drop: (i) the behavior of the local neighborhood, (ii) the behavior of the influencer,
and (iii) structural features of the influencer’s network position.

Regressions (5) and (6) reveal how the behavior of the local neighborhood affects imitation. Con-
sider the case where the influencer does not switch between rounds 1 and 2. When non-influencers
agree with the influencer, and thus do not need to switch under the Bayesian model, imitation
rates are well over 96% when the subject is in the local majority in round 2. These rates drop
slightly to about 90% when in the local minority. The role of the local environment becomes more
pronounced when the subject disagrees with the influencer. In this case, imitation is rare when
the subject is in the local majority—just 25% in Single Aggregator networks and 14% in Cluster(s)
networks. However, when the subject is in the local minority—i.e., most of their neighbors agree
with the influencer—imitation improves. This improvement accounts for 6.5 percentage points of
under-imitation in Single Aggregator networks and at least 20.5 percentage points in Cluster(s)
networks. Put differently, when subjects are in the local minority and agree with the influencer, they
rarely switch to match the local majority—imitation rates drop by 7.6 percentage points in Single
Aggregator networks and insignificantly in Cluster(s) networks. But when they disagree with the
influencer, being in the local minority increases switching rates, especially among non-connectors in
the Cluster(s) networks. Notably, the high rates of under-imitation among those who disagree with
the influencer are inconsistent with the Bayesian model, while the frequent refusal to conform to
the local majority among those who agree with the influencer stands in sharp contrast to the naive
model.

Both the Bayesian and naive models predict that once the influencer’s second-round guess is
known, their first-round guess should be irrelevant for determining the subject’s third-round decision.
However, regression (4) shows that leaf subjects who disagree with the influencer are 11.1 percentage
points more likely to imitate when they observe that the influencer switched between rounds 1
and 2—accounting for 23.2% of the under-imitation effect. Regression (5) reveals a similar pattern
among cluster members in Single Aggregator networks: when they disagree with the influencer,
observing a switch increases imitation rates by 11.7 percentage points when they are in the local
majority and by 23.4 percentage points when they are in the local minority.

To assess the effect of the influencer’s position on imitation, regression (3) includes the variable
Ratio, defined as the size of the subject’s local neighborhood divided by that of the influencer (i.e.,

48Consider third-round decisions by subjects in non-leaf positions who followed both models in the first two rounds
and for whom both models yield clear third-round predictions (462 observations). A direct, uncontrolled comparison
shows that when both models predict no switch, only 1.8% of subjects switch. When the naive model predicts a
switch but the Bayesian model does not, 5.1% switch. In contrast, when the Bayesian model predicts a switch and the
naive model does not, 32.8% switch. Even when both models predict switching, only 42.1% of subjects switch.
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the subject’s degree centrality divided by the influencer’s degree centrality). This measure ranges
from %7 for leafs in Single Aggregator networks to g for non-connectors in the Two Cores with
One Link network. The results show that when subjects disagree with the influencer, imitation
rates decline as the influencer’s informational advantage diminishes—that is, as Ratio increases. In
addition, regression (3) indicates that observing the influencer switch promotes imitation among
subjects who are much less connected than the influencer (e.g., non-aggregators in Single Aggregator
networks), but reduces imitation among subjects with similarly sized local neighborhoods (e.g.,
non-connectors in the Two Cores with One Link network).

In conclusion, third-round behavior of potential imitators deviates from the predictions of both
the myopic Bayesian and naive models. The Bayesian model is undermined by the low imitation
rates observed when the subject and influencer disagree in round 2, while the naive model cannot
account for the low frequency of switching to match the round 2 local majority. We argue that
under-imitation reflects an excessive over-reaction to concerns that the influencer may have under-
reacted to new information. Disagreement in round 2 triggers a reassessment of the influencer’s
trustworthiness. The observed patterns suggest that imitators rely on two key cues to form this
judgment. First, agreement between the influencer and the subject’s local majority serves as a
credibility cue, increasing imitation. Second, when the influencer switches between rounds 1 and 2, it
signals responsiveness to new information, which also encourages imitation. The effect of this latter
signal depends on the influencer’s informational advantage: the larger the gap, the stronger the
response. Together, these two cues raise imitation rates by 30 percentage points in Single Aggregator

networks and nearly 20 percentage points in Cluster(s) networks.

Finding 8. Participants tend to imitate neighbors with superior information, but do so far less
frequently than optimal when their second-round guess differs from that of the influencer. This
pattern of under-imitation cannot be explained by rational concerns about under-reaction to new
information or by naive behavior. Instead, we argue that it reflects an irrational and excessive
over-reaction to mis-aggregation concerns. Two cues appear to improve imitation rates: agreement
between the influencer and the subject’s local majority and switching by the influencer between rounds

1 and 2 when the influencer holds a clear informational advantage.

5.4 Guesses Beyond the Third Round

Finding 5 highlights that behavior in the first three rounds largely determines network outcomes,
with ALI rates stabilizing from round 4 onward. In practice, 41% of subjects never switched after
round 4, and 84% switched in at most two games. The positional analysis in Panel A of Table

(Section of the Empirical Appendix) reveals that, for most positions, no switches occur after

round 3 in at least 80% of cases—the exceptions being positions affected by structural frictions.
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5.5 Final Round Guesses

Table & reports regression results on the determinants of correct final-round guesses, analyzed by
network position. Recall that the final round was determined endogenously and was not distinctively
incentivized.

Across all positions, early-round mistakes emerge as a consistent and powerful predictor of
incorrect final guesses: misreporting the private signal in round 1 (for non-influencers in incomplete
networks), mis-aggregating local information in round 2 (for non-leaf positions), or failing to imitate
optimally in round 3 (for potential imitators). These long-lasting negative effects highlight the central
role of behavioral frictions—specifically, under-reaction to new information and under-imitation—in
shaping individual decisions.

As discussed in Section 5.4, late-round switching was relatively rare. Nevertheless, for participants
who made early mistakes, late switches partially mitigated the damage—recovering between 55%
and 80% of the initial loss. By contrast, for those who made no early error, late switches tended to
reduce the likelihood of a correct final guess.

Regressions (1) and (2) offer an illuminating comparison between the participants in the Complete
network and the aggregators in the Single Aggregator networks, echoing patterns seen in Figure
In Regression (1), a larger local minority size in round 1 significantly reduces the probability of a
correct final guess in the Complete network. This effect is absent in Regression (2), despite both
samples being limited to participants who observe the full network. Given that most participants act
on their private signals in round 1 (see Finding ), and that both the Complete network participants
and the aggregators in Single Aggregator networks observe all others, a larger R1 Local Minority Size
implies lower initial signal quality. Thus, while final guesses in the Complete network are sensitive
to the quality of initial signals,”” the final performance of aggregators in Single Aggregator networks
appears unaffected. This discrepancy is not accounted for by either the Bayesian or the naive models
and suggests the influence of an unobserved factor—possibly related to the connectivity of other
agents—on the aggregation process.

Regression (3) reveals another noteworthy result. In Section 3.1, we defined a surmountable
structural friction and applied it to the Two Cores networks: when connectors from opposite cliques
disagree in round 2, myopic Bayesian agents should, in some cases, optimally switch only in later
rounds. Regression (3) provides two relevant observations. First, when signal quality is poor—as
indicated by a large R1 Local Minority Size—connectors are significantly less likely to guess correctly
in the final round when they disagree. Second, in cases of round 2 disagreement, late switches by
the connectors fail to improve their accuracy. This suggests that such switching behavior is not
driven by sophisticated Bayesian reasoning.

Finally, while most networks in the experiment feature clusters of similar size, limiting our ability
to study the role of local environment size systematically, the Connected Spokes networks offer a
useful exception. They include both small clusters (three non-aggregators plus one aggregator) and

large clusters (four non-aggregators plus one aggregator). Regression (5) shows that non-aggregators

“9Regression (5) exhibits similar sensitivity by cluster members that are non-influencers.
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Reg (1) Reg (2) Reg (3) Reg (4A) Reg (4B) Reg (5)
Leafs Only Leafs Only Clusters
Complete  Aggregators Connectors | Core Periphery  All Others | with Influencers
Constant 1.082%** 1.008*** 1.142%** 0.912%%* 0.826%** 0.998%**
(0.0399) (0.0854) (0.0807) (0.0557) (0.0320) (0.0257)
Individual Controls
Probability Matching -0.00365 0.00142 -0.0885** 0.0335 0.0244 0.0200
(0.0199) (0.0542) (0.0431) (0.0588) (0.0307) (0.0165)
Gender -0.0169 0.0246 -0.0337 -0.0273 0.0237 -0.0153
(0.0142) (0.0324) (0.0349) (0.0391) (0.0182) (0.0127)
Risk Aversion 0.0247 -0.142%* 0.0162 0.0443 0.00465 0.0369
(0.0265) (0.0827) (0.0682) (0.0642) (0.0403) (0.0294)
Initial Behavior
Wrong R1 Guess -0.0160 -0.111 -0.0422 -0.173%** -0.0952%* -0.0847*%*
(0.0402) (0.0879) (0.0575) (0.0646) (0.0407) (0.0315)
Wrong R2 Guess -0.931%** -0.917%%* -0.573%** -0.0335 -0.0215 -0.312%**
(0.0284) (0.0607) (0.0967) (0.145) (0.0898) (0.0260)
Wrong R3 Guess -0.399%** -0.527*%* -0.331%%*
(0.0780) (0.0384) (0.0288)
Late Switching Behavior
Switched in R3+ -0.0958* -0.294%** 0.0254
(0.0518) (0.0976) (0.0752)
Wrong R2 Guess 0.816*** 0.862*** 0.390**
X Switched in R34+ (0.0896) (0.182) (0.154)
Switched in R4+ -0.126** -0.0887*** -0.110%**
(0.0638) (0.0337) (0.0301)
Wrong R3 Guess 0.354%** 0.475%%* 0.294%%*
X Switched in R4+ (0.132) (0.0633) (0.0509)
Local Network Information
R1 Local Minority Size -0.340%** 0.118 -0.0962 -0.218%**
(0.0918) (0.182) (0.135) (0.0483)
Core Connectors Disagree 0.00992
(0.0756)
Core Connectors Disagree -0.699**
x R1 Local Minority Size (0.278)
Core Connectors Disagree 0.00933
X Switched in R34 (0.0943)
Influencer Switched in R3+ -0.105%** -0.0159 -0.0216
(0.0376) (0.0313) (0.0183)
Network Structure
Three-Connecting Node -0.0833**
(0.0405)
Connected Spoke Small Cluster -0.0457*
(0.0242)
R-squared 0.578 0.722 0.353 0.107 0.182 0.255
# of Observations 684 159 318 522 1,411 2,900
# of Clusters 106 128 165 119 241 484
# of Session FEs 5 18 12 6 12 24

Table 8: Determinants of Last Correct Guess

Notes: All regressions are linear, with standard errors clustered at the participant level and session-game fixed effects
included. Reg (1) uses data from the Complete network; (2) from aggregators in Single Aggregator networks; (3) from
connectors in Two Cores networks; (4A) from leafs in the Symmetric Core—Periphery network; (4B) from leafs in
the Star and One Gatekeeper networks; and (5) from non-connectors in Two Cores networks, non-aggregator cluster
members in the One Gatekeeper network, and non-aggregators in the Connected Spokes network. The dependent
variable, Last Correct Guess, equals 1 if the participant guessed correctly in the final round. Wrong Rz Guess equals 1
if the participant guessed not according to the myopic Bayesian model in round x. Switched in Ry+ equals 1 if the
participant switched at any round ¢ > y relative to round y — 1. R1 Local Minority Size is the fraction of minority
guesses in the participant’s local neighborhood in round 1. Core Connectors Disagree equals 1 whenever there is
no unanimity amongst the connectors in round 2 in the Two Cores networks. Influencer Switched in R3+ equals 1
if the influencer switched at any round ¢ > 3 compared to round 2. Three-Connecting Node indicates whether the
participant is one of the three connectors in the Two Cores with Three Links network. Connected Spoke Small Cluster
indicates assignment to a small cluster in the Connected Spokes network. Individual controls include risk attitude,
probability matching, and gender. Robustness checks appear in Section of the Empirical Appendix. *** p < 0.01,
** p < 0.05, *p<0.1.
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in the smaller clusters are 4.57 percentage points less likely to guess correctly in the final round.
We interpret this as anecdotal evidence supporting the view that larger local environments facilitate

more accurate final guesses.

Finding 9. Subjects rarely revise their guesses after the third round, making early under-reaction
to new information and under-imitation persistent frictions with lasting effects on performance. In
the Complete network, final guesses are sensitive to the quality of initial signals, whereas aggregators
in Single Aggregator networks appear unaffected. In the Two Cores networks, we find no evidence of

sophisticated Bayesian reasoning.

6 Intervention: Mitigating the Behavioral Frictions

Our position-level analysis reveals that two behavioral frictions—under-reaction to new information
and under-imitation—significantly hinder participants’ ability to correctly identify the state of the
world. This section presents a follow-up experiment showing that reducing the amount of information

available to specific participants can partially mitigate both under-reaction and under-imitation.

6.1 Design

Learning in Single Aggregator networks relies on the aggregator’s ability to accurately aggregate
first-round signals and relay the result to others. Sections 4 and 5 show that these networks are
particularly prone to under-reaction to new information. To mitigate this friction, we implement
a simple intervention: withholding the aggregator’s private signal to reduce the risk of early mis-
aggregation. All other participants receive partially informative signals and are explicitly informed
that the aggregator receives none. We assess the intervention’s effectiveness using the ALI metric
and position-level accuracy.

We implement this intervention in the One Gatekeeper network, which features positional
heterogeneity among non-aggregators. Specifically, we conduct six additional experimental sessions
that replicate the original six One Gatekeeper sessions.”’ In each game of the new treatment,
non-aggregator participants received the same private signal as their counterparts in the original
sessions, while the aggregator received the message: “In Round 1 you received NO SIGNAL.” All
participants were explicitly informed that the aggregator received this message while they themselves
received a private informative signal.”’ We refer to these new sessions as One Gatekeeper Scripted.
By holding initial signals fixed for all except the aggregator, any observed behavioral differences

between the two treatments can be attributed to the aggregator’s lack of private information.

59Due to the COVID-19 pandemic, these sessions were conducted online rather than in a physical lab. The subject
pool consisted of 120 undergraduate students at The Ohio State University. Experimental instructions are provided in
Section of the Empirical Appendix.

5n a similar design, ( , ) use three-person networks in which agents receive a private signal
with probability ¢ < 1. However, in their setup, participants do not know whether others are informed or not.
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Figure 6: One Gatekeeper vs. One Gatekeeper Scripted

Notes: Each dot represents a matched pair of games. The horizontal axis reports the ALI value from the game played
under a standard One Gatekeeper session, while the vertical axis reports the ALI from the corresponding game in a
Scripted session. Circles indicate pairs where both games ended in fewer than 50 rounds (i.e. converged); squares
indicate pairs where the original game ended in more than 50 rounds (i.e. did not converge). Two matched pairs of
games are excluded from the figure because the original game featured a perfectly balanced signal distribution (nine

signals of each state).

6.2 Analysis

Figure ¢ plots matched game pairs, with ALI from the original One Gatekeeper sessions on the
x-axis and from the corresponding Scripted sessions on the y-axis. Dots above the 45-degree line
indicate more effective information aggregation in the Scripted sessions; dots below indicate the
opposite. The figure shows that withholding a private signal from the aggregator—while holding all
else constant—improved learning in the One Gatekeeper network.

Two factors explain this improvement. First, aggregators without a private signal performed
better in the second round: correct guesses rose from 86% in original sessions to 90% in Scripted
ones. This gain came primarily when the aggregator’s initial guess was in the minority. In such
cases, switching to the correct answer in round 2 increased from 59% to 90% (p = 0.015). By
contrast, when the first-round guess aligned with the majority, accuracy remained high and similar
across treatments (100% vs. 90%, p = 0.056). Thus, over 70% of aggregation errors in the original

sessions—among aggregators initially in the minority—were eliminated when the private signal was

52A binomial probability test rejects the null hypothesis that dots are equally likely to fall above or below the
45-degree line (p ~ 0.001). Figure 6 in Section of the Empirical Appendix replicates this using the ILI metric
(p = 0.002).
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Panel A: Regression Estimates

Reg (1) Reg (2) | Reg (3) Reg (4) Reg (5)
All Non-Aggregator Cluster Roles
Non-Aggregators | Leafs Only All R2 Majority R2 Minority
Constant 0.957#+* 0.967*+* 0.956%+* 0.971%+* 0.826%+*
(0.0295) (0.0441) | (0.0368)  (0.0280) (0.136)
Individual Controls
Gender 0.0150 0.0208 0.00139 -0.0140 0.0889
(0.0182) (0.0257) (0.0224) (0.0188) (0.0735)
Probability Matching -0.0492%* -0.0718** -0.0259 -0.00615 -0.110
(0.0213) (0.0306) (0.0258) (0.0155) (0.0777)
Risk Aversion -0.0421 -0.0406 -0.0483 0.0223 -0.360%*
(0.0364) (0.0520) | (0.0424)  (0.0344) (0.161)
Incorrect R1 Guess -0.124%** -0.170%*** -0.0680 -0.000118 -0.142*
(0.0349) (0.0582) (0.0482) (0.0446) (0.0828)
Aggregator Information
Disagree with Aggregator -0.594%%* -0.531%FF* | _0.672¥*¥*F  _0.687F** -0.536%**
(0.0422) (0.0576) | (0.0456)  (0.0969) (0.101)
Aggregator Switch R1 to R2 0.0237 -0.0205 0.0806** 0.0414* 0.112
(0.0319) (0.0448) (0.0385) (0.0211) (0.115)
Disagree with Aggregator 0.143%** 0.101* 0.181** 0.0688 0.213*
x Aggregator Switch (0.0452) (0.0582) (0.0751) (0.132) (0.112)
Scripted Treatment
Scripted Flag 0.0283 -0.00184 0.0655%* 0.0236 0.260*
(0.0214) (0.0300) (0.0284) (0.0273) (0.135)
Scripted Flag 0.115%* 0.149** 0.0356 -0.0935 0.0781
x Disagree with Aggregator (0.0560) (0.0714) (0.0775) (0.148) (0.130)
Scripted Flag -0.0636 -0.0279 -0.115%* -0.0476 -0.215
x Aggregator Switch (0.0446) (0.0622) | (0.0519)  (0.0308) (0.151)
Panel B: Scripted and Disagreement Contrast
Scripted Flag +
Scripted Flag 0.144** 0.147* 0.101 -0.070 0.338%**
x Disagree with Aggregator (0.062) (0.079) (0.076) (0.143) (0.106)
Observations 1,887 999 888 688 200
# of Matches 111 111 111 105 83
# of Participants 242 239 242 234 134

Table 9: Imitation in the Third Round: One Gatekeeper vs. One Gatekeeper Scripted

Notes: All regressions in Panel A are linear, with standard errors clustered at the participant level and no fixed effects
included. The sample includes 51 standard One Gatekeeper games that converged and were not tied, and all 60
One Gatekeeper Scripted games. The dependent variable, Correct Third Round Guess, equals 1 if the participant’s
third-round guess matched the aggregator’s second-round guess. Disagree with Aggregator equals 1 if the participant’s
second-round guess differed from the aggregator’s second-round guess. Aggregator Switch R1 to R2 equals 1 if the
aggregator changed their guess between rounds 1 and 2. Scripted Flag equals 1 for games played in a Scripted session.
Individual controls include the risk attitude measure, the probability matching indicator, the indicator of sub-optimal
first round guess, and gender. Panel B uses the results exhibited in Panel A to calculate the difference between rates
of imitation for participants in the scripted session who disagree with the aggregator in round 2 and participants in
the unscripted session who disagree with the aggregator in round 2. Robustness checks appear in Section of the

Empirical Appendix. *** p < 0.01, ** p < 0.05, * p < 0.1.

withheld. This suggests that removing the private signal from the aggregator directly mitigated
under-reaction to new information.
Second, withholding the aggregator’s private signal also changes the behavior of others in the

network by increasing imitation—an indirect effect of the intervention. Recall that in the One
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Single Leafs Clusters

Aggregators Only Only
Constant 0.694*+* 0.900%**  0.752%**
(0.220) (0.0415) (0.0842)

Individual Controls

Gender -0.0474 0.0236 0.0211
(0.0596)  (0.0265)  (0.0270)
Probability Matching -0.0268 -0.0893**  -0.0160
(0.0631) (0.0357) (0.0342)
Risk Aversion 0.0172 -0.0522 -0.0236
(0.0891)  (0.0488)  (0.0393)
Incorrect R1 Guess -0.251 -0.196***  _(.224***
(0.314) (0.0755) (0.0736)
Switched in R34+ -0.189 -0.00105 0.0105

(0.140) (0.0357) (0.0408)
Information and R1 Minority

Signal Wrong -0.346%*F*  _0.372%F*  _(0.352%**
(0.128) (0.0607) (0.0598)
Size of R1 Majority 0.522 0.203**
(0.332) (0.0942)
Aggregator Signal -0.000320
Matches R1 Majority (0.0445)
Scripted Treatment
Scripted Flag -0.0695 0.00446 0.0232
(0.0531) (0.0274) (0.0483)
Scripted Flag 0.329** 0.176** 0.166**
x Signal Wrong (0.153) (0.0736)  (0.0700)
Scripted Flag 0.0631
x Agg Signal Match R1 Major (0.0507)
R-squared 0.181 0.138 0.182
Observations 111 999 888
Clusters 88 239 242

Table 10: Final Guess Accuracy: One Gatekeeper vs. One Gatekeeper Scripted

Notes: All regressions are linear, with standard errors clustered at the participant level. The sample includes 51
standard One Gatekeeper games that converged and were not tied, and all 60 One Gatekeeper Scripted games. The
dependent variable, Correct Final Guess, equals 1 if the participant’s final-round guess was accurate. Signal Wrong
equals 1 if the participant’s private signal was incorrect. For the aggregator in scripted games we use the signal in
the corresponding unscripted game. Size of R1 Majority is the fraction of majority guesses in the participant’s local
neighborhood in round 1. Aggregator Signal Matches R1 Majority equals 1 if the aggregator’s signal matched the local
majority in the first round. For scripted games we use the aggregator’s signal in the corresponding unscripted game.
Scripted Flag equals 1 for games played in a Scripted session. Individual controls include the risk attitude measure,
the probability matching indicator, the indicator of sub-optimal first round guess, the indicator of late switching and
gender. Robustness checks appear in Section of the Empirical Appendix. *** p < 0.01, ** p < 0.05, * p < 0.1.

Gatekeeper network, it is optimal for all non-aggregators to imitate the aggregator from round
three onward.”” Table 9 compares third-round imitation across original and Scripted sessions. In
Regression (2), original sessions show that when a leaf’s second-round guess disagrees with the
aggregator’s, imitation drops by 53.1 percentage points.”” Panel B shows this drop is significantly

smaller in Scripted sessions—under-imitation reduces by over 25%. A similar pattern holds for

53Result 2 in Section 3 of the Theoretical Appendix extends to the case where the aggregator lacks a private signal,
provided the aggregator is unique.

5This matches the effect in Regression (4) of Table 7. Effects of observing the aggregator switch between rounds
are also consistent.

42



cluster members in the local minority after round 2 that disagree with the aggregator: as Regression
(5) shows, their imitation drop of 53.6 percentage points in original sessions is reduced by over 60%
in Scripted ones. By contrast, Regression (4) shows no effect among cluster members in the local
majority who disagree with the aggregator—imitation remains low in both original and scripted
sessions.

Table 10 analyzes the long-run effects of the intervention, revealing two key findings. First, for
aggregators, receiving no private signal is as effective as receiving a correct one—and significantly
better than receiving a wrong one. This highlights a striking result: withholding information from
a fully connected agent improves her long-term performance. Second, for non-aggregators, the
negative impact of receiving an incorrect signal is nearly halved when the aggregator lacks a signal.
As shown earlier, this is driven by greater aggregator accuracy and increased imitation, especially
by leafs and cluster minorities.

The reduced under-imitation friction observed in the One Gatekeeper Scripted sessions, along
with third-round imitation patterns observed in original One Gatekeeper sessions (Table 7), points to
trust as a key driver of imitation. As noted in Finding 7, imitators may over-doubt the aggregator’s
judgment due to common under-reaction to new information. However, imitation becomes more
likely—when it involves switching from one’s own guess—if cues boost confidence in the aggregator.
Three cues stand out from our analysis: (1) alignment between the aggregator and the local majority,
(2) the aggregator revising their guess between rounds 1 and 2, signaling responsiveness, and
(3) knowing the aggregator lacks a private signal, suggesting her guess reflects true information
aggregation rather than bias. Each cue can enhance trust in the aggregator and thereby increase
the likelihood of imitation.

Finding 10. Depriving the aggregator from having a signal mitigates under reaction to new
information, which in turn increases trust and improves imitation—especially among leafs and
second-round minority cluster members. Querall, this intervention significantly enhances information

aggregation in One Gatekeeper networks.

7 Closing the Loop: Back to Network Level Performance

Section 4 shows that aggregation is imperfect even in the Complete network, and its success
depends on both network structure and signal quality. Cluster(s) networks match Complete network
performance when signals are strong but often fail when signals are weak. In contrast, Single
Aggregator networks perform well with poor initial information but show little improvement as
signal quality rises, frequently failing even when most initial signals are correct.
In this section, we explain these network-level patterns using the structural frictions from Section
and the behavioral frictions from Sections and 5.3. In particular, we use insights from the

positional-level analysis in Section 5 and the intervention in Section 6 to account for network-level

550One might worry that withholding the signal increased the aggregator’s salience. But the position- and history-
dependent response patterns are inconsistent with a general salience effect.
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performance through individual-level behavior. We conclude with a welfare analysis identifying

positions with superior average and long-run performance.

7.1 The Complete Network

Result | shows that both the Bayesian and naive models predict absolute learning in the Complete
network: every subject should converge to the correct state, yielding ALI = 1. Empirically, Figure

confirms that information aggregation is more successful in the Complete network than in any
other structure. Yet, performance falls short of the theoretical benchmark. As shown in Panel A
of Figure 3, only 16% of games reach full convergence (ALI = 1), and the average ALI across all
games is approximately 0.6. Moreover, Figure 2 and Panel B in Figure 3 reveal a strong positive
relationship between ALI and the overall quality of private signals.

We attribute these deviations to the behavioral friction of Under-Reaction to New Information.
By the start of the second round, some subjects recognize that their private signal conflicts with
the majority’s. Yet in nearly half the cases, they fail to revise their guess (Table 1). The last two
regressions in Table 5 show that when a subject is alone in the minority after round 1, the probability
of not switching is about 18.5%, rising by roughly 4.8 percentage points for each additional incorrect
signal observed. This minority-size sensitivity helps explain why ALI is positively associated with
signal quality.

The friction persists beyond round 2. Finding 9 and Regression (1) in Table % show that even in
the Complete network—where errors are easily detectable—subjects rarely correct mistakes in later
rounds, and their final guesses remain sensitive to the size of the round 1 minority. We conclude
that performance in the Complete network is constrained by Under-Reaction to New Information,

which intensifies with weaker private signals and persists across rounds.

7.2 The Single Aggregator Networks

The Bayesian model predicts absolute aggregation (ALI = 1) in Single Aggregator networks: the
aggregator should correctly combine all signals by round 2, and all non-aggregators should imitate
her from round 3 onward (Result 2 in Section B of the Theoretical Appendix and the discussion in
Section 3.1). By contrast, the naive model treats the aggregator as an equally informed peer. As a
subject’s neighborhood grows, they place less weight on the aggregator’s guess, rely excessively on
local private signals, and ultimately cause information aggregation failures (Results 3, 4, and 5 in
Section B3 of the Theoretical Appendix).

Empirically, Single Aggregator networks perform surprisingly poorly. Panel A of Figure 3 shows
that about a quarter of their games exhibit relative information aggregation failures (ALI < 0), and
in over half of these, the final majority guess is incorrect. Figure 2 shows that with low-quality
signals, the performance of Single Aggregator networks matches the Complete network and exceeds
Cluster(s) networks. However, unlike these structures, performance does not improve with signal
quality (Panel B in Figure 3); when signals are mostly correct, Single Aggregator networks fall
behind both.
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As in the Complete network, subjects in Single Aggregator networks under-react to new informa-
tion. Table /' shows that second-round switching occurs in only 42-61% of cases among aggregators
and 31-53% among participants who are neither leafs nor aggregators. When aggregators receive
no private signal, however, this friction is largely mitigated: second-round switching failures drop
to about 10%. Indeed, Table 10 shows that for aggregators, receiving no signal is as effective as
receiving a correct one.

Table 6 shows that non-aggregators imitate infrequently when it requires changing their guess:
leaf agents do so in only 45% of such cases, and others in about one-third. Table 8 confirms that
these third-round imitation failures have a lasting negative impact on belief accuracy. Claim
and the subsequent discussion show that such low imitation rates are not rational responses to
the aggregator’s under-reaction to new information, while Footnote 48 indicates that they are also
inconsistent with the naive model. The evidence indicates that under-imitation is an excessive
and irrational reaction to the aggregator’s under-reaction. Tables 7 and 9 show that leaf nodes
and second-round local minority agents who disagree with the aggregator imitate more when the
aggregator’s under-reaction seems unlikely, but this trust-enhancing effect does not extend to
second-round local majority agents who disagree with the aggregator.

We conclude that performance in Single Aggregator networks is constrained by two behavioral
frictions: the aggregator’s under-reaction to new information and the non-aggregators’ under-
imitation. Unlike in the Complete network, the size of the first-round minority does not affect
the aggregator’s long-run performance (Section 5.5), helping to explain why performance in Single
Aggregator networks fails to improve with signal quality. One possible explanation is that aggregators

in these networks lack the implicit monitoring pressures present in the Complete network.

7.3 The Cluster(s) Networks

Both the Bayesian and naive models predict that, in most cases, core members in the Symmetric
Core—Periphery network aggregate only their own signals, though they differ in their predictions
for leafs (Result 0 in Section 3 of the Theoretical Appendix). Aggregating solely within the core
creates a structural friction when the core majority does not align with the global majority. In Two
Cores with One Link and Two Cores with Three Links networks, frictions arise when the internal
majorities of the two cores are misaligned. Under the Bayesian model, these are surmountable
structural frictions: highly sophisticated behavior by the connectors can always lead to correct
information aggregation (Results 7 and 9 in Section I3 of the Theoretical Appendix).

Experimentally, Figure 2 shows that when the aggregate quality of private signals is low, ALI is

5690cial facilitation theory—particularly the concept of evaluation apprehension—suggests that concern about being
judged by others can influence behavior and performance ( ( ), ( ) and
( )). We are not aware of applications of this theory in experimental social networks, but in our setting, more
connected neighbors may be perceived as more judgmental and knowledgeable. Since neighbor connectivity should not
affect second-round guesses, we test the monitoring hypothesis by adding the maximum degree centrality among a
subject’s neighbors to a regression where the dependent variable is correct round 2 guess (final column of Table 5).
The coefficient (0.186) is positive but statistically insignificant (¢ = 1.26), likely due to limited variation—only five
values—and absorption by session fixed effects. Therefore, we omit it from the reported regression.
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substantially lower in Cluster(s) networks than in Complete or Single Aggregator networks. However,
as signal quality improves, ALI rises, eventually matching the performance of the Complete network.

Figure / illustrates the role of both structural and surmountable structural frictions in Cluster(s)
networks. Panel A highlights the impact of signal quality on the Symmetric Core—Periphery network,
compared with the One Gatekeeper network: ALI improves as core signal quality increases. All
cases of substantial incorrect learning (ALI < —0.25) feature a slim majority in the core, where
peripheral information struggles to enter due to potential ties. Panel B shows that misaligned core
majorities reduce ALI in Two Cores networks, particularly in the Two Cores with One Link network.
Both types of structural frictions are far more likely when the overall signal distribution is weak.

In addition, as in other networks, subjects in Cluster(s) networks under-react to new information.
Table | shows that non-connectors switch in 52%-58% of cases—similar to rates in the Complete
network—while connectors switch more often, at 65%—71%. These higher rates of switching among
connectors support our speculative hypothesis that implicit monitoring pressures improve second-
round aggregation.

Cluster(s) networks demonstrate that Under-imitation depends on the network structure. Table

shows that while leafs in the Symmetric Core-Periphery network imitate in 60% of cases, imitation
rates in the Two Cores networks are substantially lower—only 21%-25%. Regression (3) in Table
highlights that when subjects disagree with the influencer, imitation rates fall as the influencer’s
informational advantage diminishes. This reluctance to imitate among non-connectors reflects the
substantial overlap between their neighborhood and that of the connector, whose only additional
links are to counterparts in the other core.

We conclude that performance in Cluster(s) networks is hindered by both structural and
behavioral frictions. Structurally, segregated groups struggle to integrate outside information.
Behaviorally, imitation rates are sensitive to the informational advantage of the influencer. These
frictions are particularly damaging when signal quality is weak, leading to poor performance.
However, they are largely neutralized when signal quality is high. As a result, since under-reaction
to new information in Cluster(s) networks is comparable in magnitude to that observed in the
Complete network when private signals are of high quality, the performance of Cluster(s) networks

approaches that of the Complete network.

7.4 Performance by Network Positions: Winners and Losers

In Sections 7.1 - 7.3, we used structural and behavioral frictions to interpret the empirical patterns
in the aggregate performance of networks. In this section, we use these frictions to account for
positional heterogeneity in performance.

Figure 7 shows the frequency of correct guesses, calculated over all rounds (overall performance)

and for the final guess (long-term performance). These measures capture welfare differences

5TFor example, we define strong-signal games as those in which no more than four agents receive incorrect signals
(see Section 4.1). With strong signals, core majorities are necessarily aligned in the Two Cores networks, and a clear
majority in the core of the Symmetric Core—Periphery network is guaranteed unless all incorrect signals are assigned to
core members. Thus, the likelihood of structural frictions in Cluster(s) networks is negligible when signals are strong.
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Figure 7: Overall and Long-term Performance, by Network Position

Notes: The frequency of correct guesses for all rounds in a game (gray bars) and for the final guess only (black bars).
Whiskers denote 95% confidence intervals, with standard errors clustered at the participant level. The horizontal line

at 70% indicates the probability of correct guess if one follows own signal and ignores everything else.

across positions and indicate which positions are most advantageous within and across networks. ”
Although large standard errors—driven by substantial variation across participants and signal
distributions—Ilimit precision, three key patterns emerge.

First, consider nodes connected to all others—mnamely, all agents in the Complete network and
aggregators in Single Aggregator networks. By the end of the first round, these positions have access
to nearly all private signals and should, in principle, achieve very high accuracy both overall and
in the final round. In practice, however, Under-Reaction to New Information limits performance
to below 87% correct guesses in both measures, which amounts to less than 60% of the expected
improvement upon the benchmark of 70%.

Second, consider nodes that, by Proposition 1, should imitate an influencer—namely, non-
aggregators in Single Aggregator networks, leafs in the Symmetric Core—Periphery network, and
non-connectors in the Two Cores networks. Proposition | implies that these nodes should match

their influencers’ final-guess accuracy and approximate it on average. In reality, however, accuracy

%8 A companion paper Agranov et al. (2025) examines whether subjects’ subjective perceptions align with these
differences; see also Footnote 12.
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rates for potential imitators are lower across all networks, positions, and measures, reflecting the
Under-Imitation behavioral friction.

Third, degree alone does not have a consistent effect on performance. We observe a positive
effect within networks when under-imitation leads higher-degree influencers to outperform potential
imitators, and across networks when leafs generally perform worse than most other positions.
Conversely, we find a negative effect within the One Gatekeeper network, where leafs outperform
cluster members on average, and across networks, where connectors in the Two Cores networks
achieve higher accuracy than aggregators in the Star and Connected Spokes networks, despite having
lower degree. Taken together, these patterns show that degree alone cannot account for information

aggregation performance; the broader network structure must be considered.

8 Discussion

8.1 The Experimental Literature on Information Aggregation on Networks

Experimental research on small-group dynamics began in the 1950s with the “MIT Experiments”
or “Bavelas Group Experiments” (see ( ) for a survey and follow-up work). In these
studies, groups of 3-5 participants were placed in interconnected cubicles and communicated through
written messages (or verbally) via wall slots (or intercom devices). Information about a puzzle was
distributed among participants, who used the available communication network to collaboratively
solve it."” These experiments demonstrated that the structure of the communication network signif-
icantly influenced problem-solving efficiency: centralized networks (e.g., star) outperformed others
when information needed to be collected in a single location, while decentralized networks (e.g.,
cliques) were more effective when further processing was required. Central positions, however, often
suffered performance declines under heavy cognitive load—a phenomenon described as “saturation,”
“vulnerability,” or “over-information.” For a modern counterpart, see ( ).

While in these puzzle-solving experiments, as in persuasion bias experiments,” each partici-
pant receives a unique piece of information essential to solving the task, information aggregation
experiments differ in that each participant receives a noisy signal about the true state of the world.
In this context, the network governs what information is available when forming beliefs about the
external state.

Building on the experimental literature on social learning (e.g., ( ))s

( , ) were the first to study information aggregation over networks. Using

directed networks of size 3 and signal accuracy %, they implemented a 3 x 3 design: three networks

®For an early survey see Section 2.5 in ( ).

50Tn the initial design, each participant received a card containing several symbols, with only one symbol common
to all cards. The task was to identify this shared symbol ( ( ); ( ).

51In persuasion bias experiments, subjects receive noisy numerical signals and are incentivized to estimate the
group average, relying on network-mediated information processing ( ( ); ( );

(2015)).
520ne-shot sequential learning designs on directed networks have been implemented in laboratory settings by
( ), who use networks of size 5 with signal accuracy 0.7, and by ( ), who use random

networks of size 40 with signals drawn from a Gaussian distribution.
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(Complete, Star, Circle) crossed with three signal distribution conditions.”” They found that a
myopic Bayesian model fits the data well when augmented with exogenous logistic shocks to the
preferences and allows subjects to respond to these trembles (Quantal Response Equilibrium model).

( ) generalized this framework using a Cognitive Hierarchy QRE model and concluded
that the dominant cognitive type is closely related to Bayes-rational behavior.

Subsequent work extended the analysis to slightly larger networks, where full Bayesian inference
becomes cognitively demanding. Much of the recent literature therefore evaluates how well simpler
alternatives—especially the naive heuristic—describe observed behavior. ( )
study undirected networks of size 7 and signal accuracy %, implementing a 3 X 2 x 3 design: three
network topologies (Star, Circle, Kite); two signal distributions (each with exactly four correct
signals); and three information conditions.”" They find that behavior varies across information
treatments and interpret this as evidence against the naive model. However, under full information,
the naive model performs comparably to Bayesian predictions at the aggregate level and outperforms
it at the individual level. Moreover, they propose an adjusted naive heuristic in which the weight
on one’s private signal increases with the clustering coefficient, while weights on neighbors’ signals
decrease and remain equal.”” This adjusted rule outperforms both standard Bayesian and naive
models in two additional networks tested in the laboratory. ( ) conduct
two experiments—one with Indian villagers and another with Mexican university students—on
undirected networks of size 7, using signal accuracy of % They use predictions of the Bayesian and
naive models to find that the naive model fits the behavior of Indian villagers significantly better
than that of Mexican students. They then use structural estimation to fit a mixture of Bayesian
and naive agents in the experimental sample. Estimated shares of Bayesian agents are around 10%
in the Indian sample and 50% in the Mexican sample.

A study of particular relevance to our setting is ( ), who investigate three directed
networks of size 40 with signal accuracy 0.7. Their baseline Erd6s—Rényi network is compared with
a Stochastic Block model to study cohesiveness, and a pre-selected Royal Family network to explore
hierarchy. Using primarily aggregate-level analysis, they conclude that the naive model provides a

much better fit than the myopic Bayesian benchmark.

53Full information: every player receives a signal; High information: every player receives a signal in probability %;
Low information: every player receives a signal in probability %

54No Information (only direct neighbors known), Incomplete Information (degree distribution known), and Complete
Information (entire network revealed). In their 2-urn treatment, ( ) implemented a No
Information condition and a similar design using networks of size 5 or 7 and signal accuracy % They focus on testing
behavioral axioms, which they later use to introduce a Quasi-Bayesian updating model.

65 A different adjustment to the naive heuristic is suggested by ( ). They conduct a neuro-imaging
study on undirected networks of size 7 with signal accuracy %, where one subject is scanned with fMRI while others
participate from standard lab settings. Subjects observe neighbors’ guesses sequentially (rather than simultaneously).
They find that from the third round onward, brain activity reveals greater weight placed on guesses from well-connected
neighbors.
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8.2 Other Models of Information Aggregation

The central claim of this study is that the myopic Bayesian and naive models cannot account for
the behavior observed in our laboratory experiments. Our approach is to introduce, identify, and
evaluate structural and behavioral frictions that align with patterns in the data. An alternative
approach would be to adopt more sophisticated variants of the myopic Bayesian model or the naive
heuristic in an attempt to reconcile them with the experimental evidence while remaining within
the same theoretical framework. In this subsection, we examine several such models and present
evidence that they, too, are inconsistent with our findings.

We begin with myopic Bayesian models that introduce noise. A prominent example is the
Quantal Response Equilibrium model of ( ), which assumes that agents follow a
logit model of discrete choice."” This model further assumes that agents hold rational expectations
regarding their neighbors’ true error rates and use estimated error rates from the previous decisions
to update their posterior beliefs. One indication of the inconsistency between noisy myopic Bayesian
models and our data comes from second-round behavior: Table 5 shows that the rate of incorrect
guesses in the second round among first-round minority members remains substantial, even when
that minority is very small. Such behavior cannot be a rational response to first-round mistakes:
only 7.8% of first-round guesses are incorrect, so the probability that small minorities in round 1 are
correct is negligible. In addition, recall that in the spirit of Quantal Response Equilibrium model,
we introduced a reduced-form model in Section to assess whether Under-Imitation could be a
rational response to Under-Reaction to New Information. When calibrated to the “true error rates”
in our data, the model predicts imitation rates far higher than those actually observed.

We now turn to adjustments of the standard naive model. As previously discussed, the standard
naive model fails to account for key patterns in our data: subjects often do not aggregate correctly
in round 2 (Finding 7) and deviate from the model’s predictions in round 3 (see Footnote 13). A
common adjustment of the naive model introduces unequal weighting, typically to reflect over-
weighting of one’s own signal. For instance, ( ) observe that “relative to
the naive model, participants on average place too much weight on their own information.” They
propose a model in which the weight on a subject’s own previous guess increases with its clustering
coeflicient—perhaps to account for correlation in the information received from neighbors—while the
weights on neighbors’ previous guesses remain equal. We can test two predictions of the rule they
suggest. First, when the self-clustering coefficient is zero, this rule collapses to the myopic Bayesian
model. Therefore, it predicts that the aggregator in the Star network—where the self-clustering
coeflicient is zero—should follow the myopic Bayesian prediction and aggregate correctly in round 2.
Yet, our data show that this occurs in only 42% of cases where the aggregator is in the minority
at the end of round 1. Second, a subject in the Complete network should switch less often than
an aggregator in a Single Aggregator network of the same size, due to the higher weight assigned

to their own guess. This prediction is contradicted by the evidence in Table 4. More generally, an

56 An agent’s random utility over alternatives depends on expected payoff and a private, standard Gumbel,
idiosyncratic shock, i.i.d. across periods, agents, and actions.
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interpretation of an unequal weighting rule—where the weights on neighbors’ previous guesses are
equal—is a fixed-threshold heuristic: a subject switches only if the number of neighbors with an
opposing guess exceeds some fixed threshold. To test this, we elicited two subject-level measures: the
maximum opposing majority size (MAX) for which they did not switch, and the minimum majority
size (MIN) for which they did switch. We were able to get both numbers for 398 subjects. Only 65
of them (16.3%) satisfied the condition MIN > M AX, which is required for a fixed-threshold rule
or a naive model in which the subject assigns equal weights to all neighbors.

Next, consider a broader class of naive models, which we refer to as the w;(t) heuristic. In this
framework, agents assign time-dependent weights to their own guess and to each of their neighbors’
guesses in the previous period. These weights are fixed before the game begins and may vary
across agents, neighbors, and rounds.”’ This general family encompasses the weights proposed
by ( ), since clustering coefficients can be computed ex ante. Crucially,
however, all these heuristics assume static perceptions of neighbors: weights are fixed and unaffected
by neighbors’ observed behavior during the information aggregation process. This assumption
contradicts our empirical findings on trust, discussed in Section 6.2. There, we show that imitation
behavior depends on cues that increase confidence in the aggregator’s guess—such as alignment
with the local majority or evidence of responsiveness (e.g., the aggregator switching between rounds
1 and 2). These cues dynamically shape subjects’ beliefs about the aggregator’s credibility. Any
w;(t) heuristic is thus inconsistent with the observed trust-based imitation, as trust implies that
different histories of play may lead to different weights—a feature these models explicitly rule out.
Usually, the weakness of naive updating is said to be its neglect of network structure, which

( ) found to be inconsistent with their data. Our findings, however, highlight a
distinct shortcoming: naive models typically assume that agents’ perceptions of their neighbors
are fixed, unaffected by the evolving history of the game. Our evidence suggests that subjects
do update their perceptions over time. In this sense, the naive model simplifies complexity—Dby
ignoring network structure—while also inadvertently eliminating a cognitively natural mechanism:
adjusting perceptions of others based on experience over time. While one could imagine relaxing the
model to allow weights to vary based on observed history, this might introduce too many degrees of
freedom, undermining the model’s explanatory power.

Finally, ( ) and ( ) propose models in which agents
are either myopic Bayesians or naive. In both models, a subject whose first-round guess differs from

the local first-round majority is expected to switch in round 2. However, Table 4 shows that in

5"Formally, let B(i) = {j1,...,j»} denote the set of direct neighbors of agent i. Her weight vector at time ¢ is
wi(t) = (wd(t), wi(t),...,wb(t)) where ZZ:O wl(t) =1 and Vk € {0,...,b} : wF(t) > 0. w(t) is the weight assigned
to her own previous guess a!~', and wf(t) (k € {1,...,b}) is the weight on neighbor ji’s guess aé;l. Under this
heuristic, agent i calculates 1_¢—1_,, w (t) + ZZﬂ 1,¢-1_y,wy(t). She then sets af = W if the calculation is greater
than 0.5, or a! = B if it is less than 0.5; otherwise, she is indifferent. ( ) introduce a standard naive
model with trembles. Our deterministic version can easily be extended to include stochastic perturbations, but this
extension does not add to the present discussion.

68 ( ) proposes dynamic weighting between one’s own guess and a weighted average of neighbors’ guesses,
in a different setting of information aggregation over networks.
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at least 40% of such cases, subjects do not switch. Moreover, when both models predict that a
potential imitator should switch in round 3, only 41.8% of subjects actually do so. These deviations
indicate that a substantial share of the subject pool cannot be accurately classified as either myopic

Bayesian or naive.

8.3 Individual Decision Making over Networks

A natural next step is to understand the individual-level decision processes that produce Under-
Reaction to New Information and Under-Imitation. This framework must also account for the
behaviors observed when structural frictions arise, the evidence that imitation is trust-dependent, the
contrast between behavior in the complete network and that of the aggregator in Single Aggregator
networks, and other phenomena reported here.

One approach is to remain within the myopic Bayesian framework, augmented with components
that explain our positional- and individual-level results.”’ Another approach is to remain within a
heuristic framework but account more closely for the empirical findings: individuals exhibit switching
aversion, they recognize positional differences, they adapt their perceptions dynamically, and they
over-react to others’ mistakes.”’ The simplicity of the chosen heuristic may depend on the network
structure and complexity.’” As in other areas of decision making, these directions are not mutually
exclusive: better optimization models can inform our understanding of procedural thinking, and

insights into procedural thinking can guide the development of better optimization models.
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