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Abstract

We study how people think others update their beliefs upon encountering new evidence.
We find that when two individuals share the same prior, one believes that new evidence cannot
systematically shift the other’s beliefs in either direction (Martingale property). When the two
have different priors, people think that any information brings others’ expected posteriors
closer to their own prior, but this adjustment is less responsive to information quality than
theory predicts. We identify the primary cause of this insensitivity and discuss the implications
of our findings for strategic games with asymmetric information, information design, and,
more broadly, for understanding societal polarization.

1 Introduction

Information plays a pivotal role in strategic settings. New evidence compels people to revise their

beliefs and adjust their actions accordingly. As a result, people care not only about their own

beliefs but also about the beliefs of others, which are shaped by the information others observe.

This is true in games with asymmetric information (Spence, 1973), coordination games (Morris

and Shin, 2002), social learning settings (Bikhchandani et al., 2024), and global games (Carlsson

and van Damme, 1993) among others. In all these environments, one’s strategic incentives depend

on how one expects new evidence to affect other players’ beliefs.

Much is known about how people update their own beliefs in response to new evidence (we

survey this literature in Section 1.1). At the same time, little is known about how people think

others update their beliefs. This is the focus of our paper. We study how second-order beliefs

respond to information, i.e., how people think others update their beliefs when those others en-

counter new evidence.

We conduct a series of experiments and empirically document how people revise their own

beliefs and how they think others revise theirs. Our study examines participants’ genuine, home-

grown beliefs about various factual statements—some neutral and rooted in general knowledge,

while others politically charged. To simplify the exposition, throughout the paper, we refer to
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two players, Anne and Bob. Anne is tasked with predicting Bob’s beliefs. In all treatments, Anne

knows Bob’s prior and the accuracy of the information structure from which Bob receives his

signals. However, in some treatments, Anne directly observes the signal realization Bob receives,

while in others, she does not. We refer to the former scenario as Bob’s conditional posterior and the

latter as Bob’s expected posterior.1,2

Our experimental design is inspired by the recent work of Kartik et al. (2021) and, more

broadly, by the principles of Bayesian updating. According to this theory, Anne’s beliefs about

Bob’s conditional posterior should be independent of her own prior beliefs; it should only depend

on Bob’s prior and signal precision. The predictions about Bob’s expected posterior are more nu-

anced. If Anne and Bob share the same prior, Bob’s expected posterior should be the same as Bob’s

and Anne’s priors. This prediction is a fundamental property of Bayesian updating: beliefs are

Martingale, meaning that new information cannot systematically alter beliefs in any direction.

However, if Anne and Bob have different priors, Kartik et al. (2021) show that any new infor-

mation will shift Bob’s expected posterior closer to Anne’s prior, with the gap between the two

narrowing as the signal becomes more accurate. This theoretical result is known as information

validates prior (IVP).3 Motivated by these theoretical predictions, our experiment features vari-

ations in the distance between Anne’s and Bob’s priors and information structures with different

accuracies.

We find strong support for the Martingale property: regardless of signal precision, when Anne

and Bob share the same prior, Anne believes that Bob’s expected posterior will be equal to his

prior. Regarding the IVP property, we find partial support. In line with the IVP, Anne believes

that any new evidence will decrease the disagreement between them, shifting Bob’s expected pos-

terior closer to her prior. This is true for all statements, including the politically charged ones.

However, more precise information structures only marginally enhance this effect. We do observe

a significant difference in the effectiveness of a more precise information structure for neutral

statements when Anne’s initial beliefs differ greatly from Bob’s and when Anne holds relatively

extreme priors herself. Otherwise, Anne expects Bob’s beliefs to be fairly rigid and not responsive

to the quality of information he samples from, diverging from what Bayesian theory predicts.

To understand why Anne’s beliefs about Bob’s expected posteriors are less responsive to the

information quality than expected, we study three elements that jointly determine expected pos-

1The two scenarios capture distinct but common situations. Imagine a friend who tells you the piece of news he read
today. You are trying to predict how his prior beliefs would change in light of this news. This is predicting someone’s
conditional posterior. Alternatively, imagine a situation in which you are advising your friend to watch some news
channel tonight, and, beforehand, trying to predict how that would change his beliefs. This is predicting someone’s
average posterior.

2We use the terms information structure accuracy, signal precision, and information quality interchangeably.
3These results hold in settings that satisfy standard ordering assumptions: the priors must be likelihood-ratio or-

dered, and the signal structures from which Bob draws new evidence must satisfy the monotone likelihood-ratio prop-
erty. When the state is binary, as in our experiment, these assumptions are nonrestrictive. Moreover, for the binary
state, the IVP property is equivalent to the result obtained in Francetich and Kreps (2014), according to which condi-
tional on the event being true, the expected posterior is bigger than the prior. However, as discussed in Kartik et al.
(2021), neither of the two results (Kartik et al. (2021) and Francetich and Kreps (2014)) nests each other in a more
general setting beyond binary signals.
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teriors. The first element is how Anne updates her own beliefs. In line with previous literature,

we find that Anne tends to underinfer both from her prior and from new evidence. This underin-

ference results in less responsive (flatter) than Bayesian posteriors and it is stronger for politically

charged statements. Moreover, we present a novel finding indicating that corner beliefs are not

as rigid and degenerate, as previously thought; Anne is willing to revise these beliefs when con-

fronted with contradictory evidence.

The second element concerns Anne’s beliefs about Bob’s conditional posteriors — how she

expects Bob to update his prior when she observes the signal he receives. Our findings reveal that

Anne tends to project her own belief-updating process onto Bob. She believes that Bob underinfers

both from his prior and from new evidence. Notably, Anne thinks Bob underinfers from his

prior more than she does when updating her own beliefs. For political statements, Anne expects

that new information will have little effect on Bob’s priors. Similar to her own corner priors,

Anne thinks that Bob’s corner priors can shift when faced with contradictory evidence. Overall,

these patterns lead to Bob’s conditional posteriors being flatter than Bayesian ones, showing less

sensitivity to changes in Anne’s prior and remaining relatively similar regardless of the quality of

the information he consumes — this constitutes the first ”flattening” effect.

The third element shaping Bob’s expected posterior is the signal distribution, which deter-

mines how Bob’s conditional posteriors are weighted in the expected value. Compared to the

Bayesian benchmark, Anne expects the signal frequencies to be less responsive to both her own

prior and the quality of the information Bob receives — this constitutes the second ”flattening”

effect.

The two ”flattening” effects operate in the same direction, collectively making Bob’s expected

posteriors quite rigid and less responsive to the quality of information he consumes relative to

what Bayesian theory predicts. This finding is important as it underscores the limited impact of

information in altering perceptions of others’ beliefs, and consequently influencing their behavior.

Given that information plays a vital role in economic settings, particularly as a tool for policy

interventions, this result challenges the presumption of its efficacy in driving collective action.

In our analysis, we use a combination of reduced-form analysis and structural estimations.4

Many of the results discussed above are evident from the raw data without the need for a behav-

ioral model. However, the structural approach provides a parsimonious framework to capture

observed patterns and allows us to conduct counterfactual exercises, which often require extrap-

olation beyond the parameters directly observed in the experimental data.

In the first structural exercise, we compare the magnitudes of two ”flattening” effects and

find that Bob’s non-responsiveness to information quality relative to the Bayesian benchmark is

primarily due to a lack of sensitivity in his conditional posteriors to the quality of the information,

4We explore several prominent models from the literature and find that the model proposed by Grether (1980) offers
the best fit to our data, achieving this with the fewest parameters compared to alternatives. Other models we estimate
include the social exchange model of Yuksel and Oprea (2022), Woodford (2020)’s model of cognitive imprecision, and
the base-rate neglect model (see chapter 6 in Benjamin (2019) survey for the evidence and theoretical underpinning of
this phenomenon).
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rather than a flattening in signal frequencies. In the second structural exercise, we assess the

magnitude of Anne’s mistakes in predicting Bob’s expected posteriors, comparing them to the

actual average Bob’s posteriors.5 By and large, the mistakes are quite small indicating that Anne is

remarkably good at predicting Bob’s average posteriors. The largest mistakes she makes pertain

to situations in which her own and Bob’s priors are extreme and are on different sides of the

spectrum. In these cases, Anne overestimates how much information will shift Bob’s opinions

toward her own. This result stems from Anne predicting that Bob underinfers from his prior

to a larger extent than he actually does. This highlights the challenge of predicting how others

respond to new information, particularly when strong and polarized opinions are involved.

Our findings extend beyond the settings discussed at the beginning of the introduction and

offer broader insights into societal polarization. A substantial body of research in Political Science

and Economics has focused on the drivers of polarization in the United States, which has deepened

over recent decades, and explored potential solutions to mitigate it (McCarthy, 2019; McCarthy

et al., 2006). The mere abundance of news sources, many of which exhibit some degree of political

bias, does not alleviate polarization (DellaVigna and Kaplan, 2007; Martin and Yurukoglu, 2017;

Azzimonti and Fernandes, 2023). Individuals tend to select information sources aligned with

their pre-existing beliefs (Garrett, 2009; Stroud, 2010), reinforcing their prior convictions when

consuming such content, in line with the martingale property of beliefs. A natural question arises:

what if individuals were exposed to news from opposing political perspectives, such as Democrats

reading Republican-aligned news? According to the IVP property, this could help bridge the gap

between polarized groups and reduce division, especially if the news sources are highly accurate.

However, our results challenge this approach, showing that while exposure to different viewpoints

does shift expectations about others’ beliefs, the change is modest, unaffected by the quality of the

news source, and people generally recognize its limited potential to reduce polarization.

1.1 Connection to the Literature

Information design. As discussed in the introduction, our experiment builds on the findings

of Kartik et al. (2021), which contributes to the extensive theoretical literature on information

design. While we do not aim to provide a comprehensive review of this literature, we want to

highlight a few studies that explore strategic communication in environments with heteroge-

neous priors. For example, Hirsch (2016) examines a model in which a principal and an agent

share common goals but hold heterogeneous prior beliefs about which policy is most effective.

This disagreement complicates the agent’s motivation but can be alleviated through policy ex-

perimentation and observing outcomes. Alonso and Camara (2016) considers a setting where the

sender and receiver have differing prior beliefs, and the sender designs an experiment to persuade

the receiver. The authors characterize the set of posterior belief distributions that can be induced

by such experiments in setup with flexible information structure, i.e., no standard ordering as-

5This is different from the previous analysis, in which we took Bayesian prediction as a benchmark against which to
compare Anne’s predictions of Bob’s average opinions after obtaining new evidence.
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sumptions, and identify necessary and sufficient conditions under which persuasion benefits the

sender. Che and Kartik (2009) investigates a game in which a decision-maker consults an adviser

before making a decision. The adviser can exert costly effort to obtain a signal about the state

and communicate this information to the decision-maker. Although both parties care about the

state, their differing prior beliefs create a tension: these differences incentivize information acqui-

sition but simultaneously lead to information loss through strategic communication. In all these

papers, agents must form beliefs about how others, who may hold different priors, update their

beliefs when new evidence arrives—a process which we investigate experimentally in our study.

First-order beliefs. In recent decades, we have learned a lot about how people update their be-

liefs upon encountering new evidence. Benjamin (2019) provides an excellent and comprehensive

review of empirical research from both Economics and Psychology, identifying consistent patterns

and notable deviations from Bayesian theory. While some findings support Bayesian predictions,

others highlight systematic discrepancies. Recent contributions to the field include Esponda et al.

(2023), Augenblick et al. (2024), Ba et al. (2023), Gneezy et al. (2023), Enke and Graeber (2023),

and Agranov and Reshidi (2024) among others. By and large, this literature finds that while be-

lief revisions generally follow the direction predicted by Bayesian theory, the magnitude of these

revisions often deviates from the expected levels.

Most studies in this branch of literature employ neutral contexts and induce participants’

priors to establish a controlled baseline for initial beliefs. A notable exception is the recent study

by Thaler (2024), which elicits participants’ genuine beliefs on politically charged topics such as

crime, climate change, gun control, and racial discrimination. This study finds that individuals

distort new information in favor of their pre-existing views, consistent with motivated reasoning

mechanisms. Its design elegantly differentiates this explanation from Bayesian updating motives.

Like Thaler (2024), we use genuine beliefs in our experiment but pursue a different research

question focusing on how people think others revise their genuine beliefs upon receiving new

information.

Higher-order beliefs. Our paper contributes to a growing experimental literature that studies

higher-order beliefs and higher-order rationality. Most of this literature focuses on strategic set-

tings: higher-order beliefs play an important role in these settings as they affect what actions

players take.6 For instance, Manski and Neri (2013) elicit the subjects’ first- and second-order

beliefs in the Hide-and-Seek game and examine the coherence between these beliefs and actions.

The results show remarkable consistency: observed choices are optimal given first-order beliefs

in 89% of the time and in 75% of the time given second-order beliefs. Healy (2024) elicits partic-

ipants’ preferences over game outcomes, their strategies, as well as first- and second-order beliefs

in a series of classical games, including Prisoners’ Dilemma and the Centipede game. The data re-

6There are several excellent surveys of belief elicitation in experiments including Trevino and Schotter (2014), Char-
ness et al. (2014), Schlag et al. (2015), and Healy and Leo (2024). The survey of Trevino and Schotter (2014) provides a
detailed discussion of elicitation methods used to recover second-order beliefs.
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veals heterogeneity in participants’ preferences, which are not captured by game payoffs, but this

heterogeneity only partially explains the gap between participants’ beliefs and their own actions.

Kneeland (2015) studies the Ring Games and demonstrates that over 70% of players are both ratio-

nal and believe in others’ rationality, though this decreases for higher-order beliefs. Friedenberg

and Kneeland (2024) extend this work to distinguish between players who have limited reasoning

abilities and those who can reason iteratively but have limited belief in others’ rationality and

find that over 60% of participants engage in strategic reasoning beyond basic rationality. Calford

and Chakraborty (2023) show that the discrepancies in one’s belief about an opponent and one’s

beliefs about others’ beliefs about that opponent affect deviations from subgame perfection in a

sequential social dilemma. Szkup and Trevino (2020) infer how people think others update their

beliefs in a coordination game with incomplete information, i.e., the global game.

Another class of games in which second-order beliefs are crucial is psychological games. In

these games players’ payoffs depend not only on material payoffs but also on the first-, second-

, and possible higher-order beliefs about one’s opponent. For instance, Dufwenberg and Gneezy

(2000) elicit players’ first- and second-order beliefs in the Lost Wallet game, Charness and Dufwen-

berg (2006) do so in the Trust Game, and Agranov et al. (2024) do so in an extended version of the

sender-receiver game.

Some of the papers discussed above infer second-order beliefs from participants’ actions and

participants’ beliefs about others’ actions, while others elicit second-order beliefs directly. Our

paper uses the latter approach and elicits second-order beliefs directly without relying on infer-

ence techniques. However, different from this literature, we deliberately focus on a non-strategic

environment, which provides a clean free-from-strategic-considerations playfield to document

how people think others revise their beliefs in response to new information.

The two closely related yet distinct studies are Evdokimov and Garfagnini (2022) and Trujano-

Ochoa (2024). Evdokimov and Garfagnini (2022) investigate higher-order beliefs in a three-player

game where participants receive either private or public signals about the state. Player 1 reports

his beliefs, Player 2 reports second-order beliefs, and Player 3 reports third-order beliefs. The

authors find that belief updating is slower with private information, and higher-order learning

often fails. In contrast, we test key Bayesian properties—specifically, the Martingale and IVP

properties—and focus on how second-order beliefs respond to new information. Similar to our

motivation, Trujano-Ochoa (2024) explores how people expect others to update their beliefs. His

focus is on establishing to what extent people consider the biases of others when updating their

beliefs and on information acquisition patterns.7

Finally, our paper relates to a small experimental literature that studies whether people antic-

ipate the biases of others. The recent paper by Danz et al. (2024) studies the relationship between

the extent to which one projects her information onto others and the extent to which one antici-

7This work is still in progress. The preliminary draft we have access to suggests that, on average, people expect
others to update in a similar manner to themselves. However, they show a significantly lower willingness to pay when
others’ strategies are implemented on their behalf. This latter finding is consistent with an expectation that others are
more conservative in updating than they are themselves.
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pates but underestimates the projection of others onto her as predicted by the behavioral model

of Madarasz (2016). The results show strong support for the projection equilibrium model. Fedyk

(2024) finds that individuals exhibit substantial sophistication regarding the present bias of oth-

ers, while being mostly naive about their own.

The rest of the paper is structured as follows. We present the conceptual framework in Sec-

tion 2. Section 3 describes our experimental design and the experimental procedures. Section

4 presents reduced-form evidence on Martingale and IVP properties. Section 5 utilizes all con-

ducted treatments to unpack the aggregate results presented in the previous section. Section 6

offers some conclusions.

2 Conceptual Framework

Consider a standard belief-updating task with a binary state ω ∈ {0,1}. There are two decision-

makers, Anne and Bob, who may have the same or different priors about the state. We denote by a0

and b0 the prior of Anne and Bob, respectively. These priors indicate the probability that the state

is ω = 1 according to each of the two decision-makers. Bob receives a partially informative signal

s and updates his beliefs about the state. We denote by bs Bob’s posterior belief after observing

signal s and refer to it as Bob’s conditional posterior. The signals are also binary and have accuracy

θ. The accuracy of a signal indicates the likelihood that the signal matches the state conditional

on the state, i.e., θ = Pr[s =ω|ω].

Anne knows both Bob’s prior and signal accuracy, and she is tasked with predicting Bob’s

average posterior after he receives a signal. The challenge arises because Anne does not observe

the signal Bob receives; instead, she must weigh Bob’s conditional posteriors according to the

likelihood of the signals. We call this object Bob’s expected posterior, and denote it by E[b]. If Anne

is Bayesian and expects Bob to be Bayesian, then

E[b] = Pr[s = 1] · bs=1 + Pr[s = 0] · bs=0 (1)

where

bs=1 =
b0θ

b0θ + (1− b0)(1−θ)
, bs=0 =

b0(1−θ)
b0(1−θ) + (1− b0)θ

,

Pr[s = 1] = a0θ + (1− ao)(1−θ) , and Pr[s = 1] = 1−Pr[s = 0].

In words, Anne expects Bob’s prior b0 to influence how Bob updates his beliefs for a given

signal, while her own prior a0 to determine the signal frequencies. It is easy to see that when

Anne and Bob share the same prior, we recover the fundamental property of Bayesian updating:

beliefs are Martingale, i.e., information cannot systematically bias beliefs in any direction. This

means that Anne’s belief about Bob’s expected posterior, which is the same as her own posterior

belief would be, should be equal to her and his prior.

When Anne and Bob have different priors the situation changes and any information is pre-

dicted to move Bob’s expected posterior closer to Anne’s prior. The recent paper by Kartik et al.
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(2021) shows that Anne expects a Blackwell more informative signal to bring Bob’s expected poste-

rior closer to her own prior. To translate this to our setting, say, Bob has access to two information

structures that only differ in signal accuracy, i.e., 1 > θ1 > θ2 >
1
2 . Then, Anne expects that both

signal structures will move Bob’s average posterior closer to her prior compared to what Bob’s

original prior was. Moreover, she anticipates that the structure with more precise signals, i.e.,

θ1, will result in a larger shift and a smaller final disagreement between Anne’s prior and Bob’s

expected posterior.

This result is known as the Information Validates Prior (IVP) property. As we argued in the

introduction, its significance is broad, spanning many strategic settings studied in Economics and

Political Science. It is precisely this result that we set out to investigate empirically in our paper.

3 Experimental Design

Given our interest in how participants think others update their beliefs when they may have

potentially different priors we chose to work with genuine, home-grown beliefs participants have

about various facts. In the next section, we discuss the advantages and disadvantages of using this

method compared to induced beliefs.

Specifically, we used twelve factual statements in the experiment. Each statement is either

true or false. Participants know that the experimenter knows whether the statement is true or

false, but naturally may hold different beliefs about the probability that a statement is true. Here

are two examples of such statements8:

• In 2023, the United States spent more than 10% of the federal budget on foreign aid.

• Rhino horn is made up of keratin - the same protein which forms the basis of our hair and

nails.

Treatments. The experiment consists of three main treatments. Treatment T0 is the benchmark

treatment, in which we document how people update their own beliefs in response to new infor-

mation. The purpose of treatment T1 is to study how Anne thinks Bob updates his beliefs when

she knows Bob’s signal, i.e., Anne’s beliefs about Bob’s conditional posteriors. Finally, the pur-

pose of treatment T2 is to study Anne’s beliefs about Bob’s expected posterior, i.e., the situation in

which Anne does not observe Bob’s signal.

Structure of the experiment. Each treatment consists of three parts. Participants receive the

instructions for the next part after they complete the previous one. Instructions before each part

include a comprehension quiz to check participants’ understanding and focus their attention on

the main features of the experiment. The instructions and the screenshots are presented in the

Online Appendix.

8Figures 9 and 10 in the Appendix present all statements used in the experiment and the visualization used along-
side the statements.
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Part 1 consists of 6 rounds and is the same in all treatments. In each round, we present par-

ticipants with one of the statements and elicit their priors about the chance that the statement is

true. We then provide participants with a partially informative signal about the correctness of

the statement and elicit their posterior about the chance that the statement is true. Signals are

generated from two signal structures: a more precise one with θ1 = 0.90 and a less precise one

with θ2 = 0.65. One of these two structures is randomly selected in each round, and a participant

knows signal accuracy when she makes her choices. We will use these two signal structures to in-

vestigate the IVP property which requires comparing the more- and the less-precise information

structures. Participants receive no feedback at the end of each round in Part 1. After completing

a round, they move on to the next one and are shown the next statement.

Part 2 consists of 6 rounds as well and is different in each treatment. In T0, Part 2 is the same

as Part 1. That is, participants go through another set of 6 statements, report their priors, observe

signals, and report their posteriors. A key reason for collecting extensive data on participants’

own belief updating is to calculate participants’ payments in treatments T1 and T2. This requires

observing posteriors for each statement across different signal realizations within various signal

structures, which is what we do in T0. We conducted T0 a few days prior to the other treatments

to ensure this data would be available for payment calculations.

Part 2 in the remaining two treatments is slightly different. In each round, participants start

by observing a statement and reporting their prior. Then, they are matched with past participants

from T0 and observe the past participants’ prior for the same statement and signal accuracy.

Participants in T1 also observe the signal realization received by the past participants, while in T2,

no such information is provided. In both treatments, after observing the information, participants

are asked to guess the posterior reported by these past participants.9

The last part, Part 3, consisted of just one round and was administered only to participants

who reported a corner prior for one of the statements. If such an event happened, then one of the

questions for which a corner prior was reported was chosen and a participant was offered a choice

between a very risky bet and a safe payment of $10. The risky bet pays $11 in case the reported

prior is correct and $0 if it is wrong. The goal of this final (surprise) round was to gauge how

much faith people have in their corner beliefs when they report them. Risking losing $10 makes

sense only if one has little doubt in the reported belief.

At the end of the experiment, participants answered a few unincentivized questions about the

difficulty of the experiment. In addition, following McGranaghan et al. (2024), every 3 rounds,

we presented participants with an unincentivized visual brain break to reduce fatigue (see an

example in the Online Appendix).

Order of statements. Since all rounds are the same in Parts 1 and 2 in T0, the order of statements

was randomized across participants in this treatment. For T1 and T2, we split the statements into

two batches (batch A consists of statements 1 to 6 and batch B consists of statements 7 to 12). We,

9We refer the reader to the Online Appendix for the screenshots detailing the language used to explain these tasks
to participants.
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then, conducted two versions of each treatment: T1A and T2A used batch A in Part 1 and batch

B in Part 2, and T1B and T2B used batch B in Part 1 and batch A in Part 2. Within each part, the

order of statements was randomized across participants.10

Parameters. Testing the IVP and the Martingale properties requires a variation in Anne and

Bob’s priors, capturing both similar and distinct priors between the two and spanning a wide

range of possible priors. To do so, we match T1 and T2 participants with T0 participants with

six pre-selected priors, b0 ∈ {0.10,0.20,0.60,0,70,0.90,1.00}.11 For each prior b0, we selected two

statements that had a sufficient number of participants reporting such a prior in T0 and providing

us with posterior beliefs of past participants (participants in T0) for each signal realization and

each signal accuracy. As described above, such data is necessary for computing the payments of

participants in T1 and T2.12

Subject pool. The experiments were conducted on the Prolific platform in January 2024 with

roughly 200 participants in each treatment, for a total of 603 participants. We recruited partici-

pants between the ages of 21 and 65, who live in the United States, specify English as their first

language, and have a high (90+) approval rating on Prolific. For each treatment, an equal number

of men and women were recruited.

Participants’ payments. All participants received a fixed payment upon completion: $3 in the

T0 and $4 in the T1 and T2 treatments.13 In addition, each participant had a 20% chance to

be selected into a bonus group. For the selected participants, the computer randomly chose one

of the questions from one randomly selected round for payment. The answer submitted in the

chosen question determined whether the selected participant received an additional bonus of

$10. We used the standard BDM method to incentivize subjects to truthfully state their beliefs.14

In addition, in each treatment, we randomly selected eight participants to receive an additional

bonus based on their decisions in Part 3 (the corner beliefs). Treatment T0 lasted about 16 minutes

and participants earned, on average, $4. Treatments T1 and T2 lasted about 20 minutes and

participants earned, on average, $5.

10This design mitigates the concern that some of the patterns we find in the data are driven by specific statements
people saw in one part of the experiment.

11Figures 9 and 10 in Appendix present the distribution of priors elicited from participants in T0 and indicate which
prior was used as past participants’ priors in T1 and T2.

12An alternative design would be to match participants from T1 and T2 randomly with past participants from T0.
The drawback of this design is that an even larger amount of data is required for T0 to ensure that all signal realizations
occur for both signal structures and all priors of past participants, some of which are naturally quite rare.

13These completion fees are standard, given the average time it takes to complete each treatment.
14The BDM payment is theoretically an incentive-compatible method for eliciting truthful responses regardless of

participants’ risk attitudes (Becker et al., 1964). In addition, following Danz et al. (2021), we told participants that
they had no incentive to report beliefs falsely if they wanted to maximize the expected payoff in the experiment. This
technique became standard in the literature as it helps participants to understand payment method and, as a result,
helps the experimenter to elicit participants’ true beliefs.
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Implementation. The experiment was approved by Caltech (IR21-1179) and preregistered on

aspredicted.org (#158497).15 The experimental software was programmed in Qualtrics. Instruc-

tions and screenshots of the interface are presented in the Online Appendix. Table 1 summarizes

the details of all three treatments.

Table 1: Design

Part 1 Part 2 Part 3
Treatment own beliefs others’ beliefs corner beliefs Nb participants

6 rounds 6 rounds at most 1 round
elicit own prior own prior

T0 observe signal acc., signal signal acc., signal risky bet 201
report own posterior own posterior
elicit own prior own prior

T1 observe signal acc., signal other’s prior, signal acc., signal risky bet 198
report own posterior other’s conditional posterior
elicit own prior own prior

T2 observe signal acc., signal others’ prior, signal acc. risky bet 202
report own posterior others’ expected posterior

3.1 Discussion of Experimental Design

In this section, we discuss the rationale behind our key design choice of using genuine, home-

grown beliefs instead of inducing beliefs in a neutral context.

To study the IVP property, one needs an environment in which participants have different

beliefs. There are two ways to do that. The first approach involves inducing varying beliefs by

providing participants with private signals about the state (Andreoni and Mylovanov, 2012). The

second approach prescribes eliciting participants’ genuine, naturally formed beliefs about certain

factual events (Thaler, 2024).16

Both methods have their advantages and disadvantages. The primary advantage of inducing

beliefs lies in the ability to control participants’ beliefs. This is straightforward when inducing

a common belief among all participants. However, it becomes more challenging when inducing

heterogeneous beliefs, as this requires participants to update their beliefs based on the private sig-

nals they receive. Given the extensive literature documenting deviations from Bayesian updating

(Benjamin, 2019), it is unclear whether an experimenter employing this approach can effectively

control the induced priors.17

15We conducted two small pilots (pre-registration #110598 and #124788) with different framings of the main belief-
updating task to test the software and verify standard behaviors documented in the literature. During this pilot,
we identified software errors and realized that our modified framing was unclear to participants. Consequently, we
reverted to the standard framing from the literature, focusing on eliciting genuine priors rather than inducing priors.
Results from this pilot are available from the authors upon request.

16The focus on factual events as opposed to future events that have not happened yet is dictated by the need to
incentivize people to report their beliefs truthfully, which requires the experimenter to know the state—in our case,
whether the statement is correct or false.

17The additional subtle issue with inducing heterogeneous beliefs is what Anne can infer from Bob’s prior about
Bob’s ability to use new information. To illustrate, consider a standard environment with two urns containing balls
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Working with genuine beliefs sidesteps this issue, as individuals naturally hold differing be-

liefs on various topics, including factual statements. Moreover, participants are not likely to be

surprised when they learn that others have different views. However, this approach requires col-

lecting a substantial amount of data to capture the variations in Anne’s and Bob’s priors necessary

for evaluating the IVP and Martingale properties.

Our approach of eliciting genuine beliefs as opposed to induced beliefs offers three additional

advantages. First, it provides the enhanced external validity of the results, as they directly speak

to how people adjust their natural beliefs in response to new information. Second, this approach

enables us to investigate whether genuine beliefs about neutral topics—such as general knowledge

statements—respond differently to new information compared to politically charged statements.

Our study offers a preliminary exploration of these differences, and we hope future research will

expand it and provide more comprehensive evidence. Third, it allows observing genuine corner

priors —instances where participants report extreme confidence in the statement being either true

or false. These cases are particularly interesting because they allow us to examine whether corner

beliefs are degenerate, as theory suggests, or if they can respond to new information. This type of

analysis would not be possible with induced beliefs.

4 Results

We start with presenting reduced-form evidence on Martingale and IVP properties (Sections 4.1

and 4.2). In this analysis, we use the data from T2 treatment, in which Anne predicts Bob’s ex-

pected posterior. In Section 5 we explore what drives these aggregate results by studying how

Anne updates her own beliefs, how Anne thinks Bob updates his beliefs when she knows his

signal realization, and what this means for Anne’s beliefs about signal distribution.

Approach to Data Analysis. We define Anne and Bob as having the same priors if their priors

differ by no more than 5 percentage points, and different priors if the difference exceeds 5 percent-

age points. We further categorize the extent of their differences using the following distinctions.

We call Anne’s and Bob’s priors very polarized if they differ by more than 40 percentage points,

polarized if the difference falls between 20 and 40 percentage points, and somewhat polarized if

the difference is between 5 and 20 percentage points. Statistical tests are performed using regres-

sions, in which we cluster standard errors by individuals to account for the inter-dependency of

observations that come from the same participant.18

of different colors. Both Anne and Bob know the compositions of the urns and the chance that each urn is selected;
the selected urn represents the state. Each observes a private draw from the urn and forms a belief about the state.
These formed beliefs could potentially serve as Anne’s and Bob’s priors for the investigation of the IVP and Martingale
properties. Say, Bob’s posterior belief is communicated to Anne. If this belief is unreasonable given the composition of
the urns, then Anne will make inferences about Bob’s ability to update already at the inducing-the-priors stage of the
experiment, which would confound Anne’s beliefs about how Bob updates his beliefs given new information.

18To be precise, we regress the variable of interest (for instance, the difference between Anne’s prediction about Bob’s
expected posterior and Anne’s prior) on a constant and an indicator for one of the treatments (for instance, the test
accuracy), while clustering standard errors at the individual level. We say that the two treatments are significantly
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4.1 Martingale property

Does Anne expect information to systematically alter Bob’s posterior when they share prior? Fig-

ure 1 presents the CDFs of the difference between Anne’s beliefs about Bob’s expected posterior

and his original prior, which also happens to be her prior.

Figure 1: Changes in Bob’s beliefs when Anne and Bob share the same prior

Notes: The difference between Anne’s prediction about Bob’s expected posterior and Anne’s own prior is reported. We

focus on cases in which Anne and Bob have similar priors. The data is from Part 2 of treatment T2.

The average difference is not significantly different from zero when the test accuracy is 65%

(p = 0.507) and is significantly different from zero but very small when the test accuracy is 90%

(equals 4 percentage points, p = 0.051). Moreover, as seen from Figure 1, the two CDFs are close

to be symmetrically distributed around zero, and there is no statistical difference across the two

signal structures (p = 0.135). This analysis provides strong support for the Martingale property.

Observation 1: Anne believes that Bob’s beliefs satisfy the Martingale property, i.e., from an ex-ante
perspective, information cannot alter Bob’s beliefs.

4.2 IVP property

What does Anne think about Bob’s expected posterior when they have different priors? The IVP

property has two empirical footprints. First, Anne expects any information to be effective at bring-

ing Bob’s posterior closer to her prior relative to the original disagreement in their priors. Second,

the more precise information is expected to decrease disagreements between Anne and Bob pro-

duce larger shifts in Bob’s expected posterior relative to the less precise information. Table 2 and

different when the estimated treatment indicator is different from zero at the standard 5% level and report the p-value
associated with the estimated indicator.
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Figure 2 depict the basic statistics and cumulative distribution functions (CDFs) of the absolute

differences between Bob’s expected posteriors and Anne’s priors for the two signal structures, as

well as the original difference in opinions (priors) between them.

Figure 2: Changes in Bob’s beliefs when Anne and Bob have different priors

Notes: The left panel depicts the CDFs of the absolute differences between Bob’s and Anne’s priors, as well as the

absolute differences between Bob’s expected posteriors and Anne’s priors. The right panel displays the differences

between Bob’s expected posteriors and Anne’s priors, broken down by each level of prior disagreement. The analysis

in both panels focuses on cases where Anne and Bob have different priors.

Consistent with the IVP prediction, any information structure moves Bob’s posteriors closer to

Anne’s priors. The shift is large in magnitude and significant at 1% level regardless of how differ-

ent Anne’s and Bob’s original opinions were.19 Moreover, more precise signals shift Bob’s beliefs

closer to those of Anne. In fact, the CDF curve for test accuracy 65% first-order stochastically

dominates the one for test accuracy 90%. However, the difference between the two CDFs is rather

small and only marginally significant (p = 0.079).

The right panel in Figure 2 and the data in Table 2 show that the difference between the two

information structures primarily comes from cases in which Anne’s and Bob’s original priors are

very polarized (at least 40 pp apart). Put differently, when Anne and Bob have very different initial

opinions, Anne expects Bob’s posterior to move closer to her prior when he learns from a more

accurate source. The effect in this case is large in magnitude and highly significant (p = 0.001): the

median shift is 10 pp and it is almost 20 points when Anne has extreme priors. At the same time,

contrary to the IVP property, when Anne’s and Bob’s priors differ by less than 40 pp, we observe

no difference between the two information structures in general (the two blue and the two red

19The CDFs of the differences between Bob’s and Anne’s priors for two signal structures overlap. This is by design,
as Bob’s signal precision was randomly assigned in the experiment. For brevity, this graph is omitted but is available
from the authors upon request.
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Table 2: Differences in Anne’s and Bob’s beliefs before and after Bob consumes new evidence, in
absolute terms.

Bob’s prior is different from Anne’s prior (at least 5 pp difference)

Anne’s prior
all extreme intermediate close to uniform

mean (se) med mean (se) med mean (se) med mean (se) med
before info 39.8 (1.0) 35 44.4 (1.5) 40 35.6 (1.1) 30 30.6 (1.2) 35
info acc 90% 24.8 (1.1) 20 24.5 (1.6) 15 25.0 (1.5) 20 24.6 (1.6) 30
info acc 65% 27.3 (1.0) 20 31.1 (1.5) 25 24.0 (1.5) 20 20.7 (1.9) 20
p-values

before vs 90% p < 0.001 p < 0.001 p < 0.001 p = 0.018
before vs 65% p < 0.001 p < 0.001 p < 0.001 p < 0.001
90% vs 65% p = 0.079 p = 0.002 p = 0.440 p = 0.098

Anne’s and Bob’s priors are very polarized (more than 40 pp difference)

Anne’s prior
all extreme intermediate close to uniform

mean (se) med mean (se) med mean (se) med mean (se) med
before info 67.9 (0.8) 65 75.0 (0.9) 70 55.9 (0.8) 55 49.6 (0.7) 50
info acc 90% 34.0 (2.0) 30 36.1 (2.7) 30 28.5 (2.8) 25 n/a n/a
info acc 65% 42.4 (1.8) 40 47.2 (2.2) 49 37.0 (2.4) 40 29.5 (4.6) 33
p-value

before vs 90% p < 0.001 p < 0.001 p < 0.001 n/a
before vs 65% p < 0.001 p < 0.001 p < 0.001 p < 0.001
90% vs 65% p = 0.001 p = 0.001 p = 0.024 n/a

Notes: Each table reports the difference between Anne’s and Bob’s prior beliefs in the first row and the differences

between Anne’s beliefs about Bob’s expected posterior and her own prior in the second and third rows. The second and

third rows differ by signal accuracy. We focus exclusively on cases where Anne and Bob have different priors. Entries

marked n/a indicate instances with fewer than 10 observations. Anne’s prior is categorized into three groups: extreme

priors (below 20 or above 80), close-to-uniform priors (between 40 and 60), and intermediate priors (the remaining

category, i.e., priors between 20 and 40 or between 60 and 80).

lines in the right panel of Figure 2 are very similar).20 Overall, when Anne’s and Bob’s opinions

are not too different, Anne believes that Bob’s posteriors will shift similarly regardless of whether

he learns from a more precise or a less precise source.

Anne’s beliefs about changes in average Bob’s beliefs for politically charged statements are

similar to those for non-politically charged statements but with an even greater disregard for

the quality of information compared to neutral statements. Figure 11 in Appendix replicates

Figure 2 for two politically charged statements used in our experiment.21 It illustrates that Anne

20Table 6 in Appendix, presents similar statistics as the bottom part of Table 2 for the case in which Anne’s and Bob’s
priors differ by at most 40 pp. The data shows that when Anne’s beliefs are extreme, the more precise information
structure shifts Bob’s expected posterior closer to Anne’s prior, consistent with the IVP property. However, the opposite
is true when Anne’s priors are intermediate or close to uniform; in these cases, Anne thinks that the less precise signals
are more effective at reducing the polarization of opinions between Anne and Bob.

21We have two politically charged statements: statement 6 about the estimates of GDP growth under Democratic vs
Republican presidents and statement 3 about the United States foreign aid spendings.
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believes Bob’s average posterior beliefs will still move closer to her own prior after receiving new

information. Yet, unlike neutral statements, these shifts are identical regardless of the quality of

the information Bob receives.

How do Anne’s estimates about shifts in Bob’s posteriors compare to those predicted by Bayesian

theory? Figure 3 combines the data from both information structures and depicts the difference

between predicted and observed posteriors depending on whether Anne’s prior is above or below

that of Bob’s and how different the two priors are (black solid and dashed lines).22 As a reference,

we also plot the case in which Anne and Bob share the same prior (red lines).

Figure 3: Anne’s estimates of Bob’s expected posteriors vs Bayesian predictions

Anne’s prior below Bob’s prior Anne’s prior above Bob’s prior

Notes: We plot the CDFs of the differences between Bob’s Bayesian-predicted posterior expectations and Anne’s esti-

mates of these values. The plots are separated into cases where Anne’s prior is lower than Bob’s (left panel) and cases

where Anne’s prior is higher than Bob’s (right panel). The data is sourced from Part 2 of treatment T2.

As we’ve discussed above, when Anne shares the same prior as Bob, she expects Bob’s poste-

rior to be on average the same as Bob’s or her own prior. In Figure 3 this is depicted by red lines

being very close to zero and actually being exactly equal to zero for a large portion of the data.

However, when Anne and Bob do not share the same priors, Anne tends to underestimate how

Bob’s posteriors move relative to those predicted by Bayesian theory. Indeed, when Anne’s prior is

above that of Bob, the majority of Anne’s estimates are below predicted ones, while the opposite

happens when Anne’s prior is below that of Bob. Figure 14 in Appendix replicates Figure 3 for

Anne’s extreme beliefs, for which we find the strongest qualitative support of the IVP, and doc-

ument similar patterns. Overall, Anne expects that Bob’s reaction to information is much more

inert than what the Bayesian theory predicts.

Observation 2: We find partial support for the IVP property. Consistent with the IVP, Anne thinks
that any information brings Bob’s average opinion closer to her own, and more precise information is

22Figure 13 in Appendix presents Figure 3 separately for each information structure and shows very similar patterns.
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(marginally) more effective at this job. However, the significant difference in the effectiveness of more
precise information structures is observed only when Anne has very different beliefs from Bob, when
Anne holds relatively extreme prior beliefs herself, and when the statements are neutral. Otherwise,
Anne expects Bob’s beliefs to shift similarly regardless of information quality. In other words, Anne
thinks that Bob’s average posteriors are not responsive to information quality, contrary to what the
Bayesian theory predicts.

5 Unpacking Aggregate Results

In this section, we study what drives aggregate results presented in Section 4. We start by docu-

menting how Anne revises her own beliefs in response to new information using the data collected

in treatment T0 and in Part 1 of treatments T1 and T2 (Section 5.1). We then investigate how Anne

thinks Bob forms his conditional posteriors when new information arrives using the data collected

in Part 2 of treatment T1 (Section 5.2). After that, in Section 5.3, we study how Anne predicts the

signal frequencies based on what we learned about Anne’s updating process in Section 5.1. Sec-

tion 5.4 closes the loop by bringing all these elements together and explaining why Anne’s beliefs

about Bob’s expected posteriors are much more rigid than Bayesian theory predicts.

The analysis is structured as follows. We first present model-free raw data patterns. Then, we

analyze the data through the lens of the Grether (1980) model, which is one of the most popular

behavioral models used in the literature to account for deviations in belief-updating tasks (Ben-

jamin, 2019). In our case, it turns out that the Grether model outperforms alternative behavioral

models proposed in the literature. We discuss these alternatives and run a horse race between the

models in Appendix 7.1.

5.1 How Anne Updates Her Beliefs

The left panel in Figure 4 depicts Anne’s reported posteriors as a function of Bayesian posteriors.

For both signal accuracies, we observe a familiar inverse S-shape (Benjamin, 2019; Enke and Grae-

ber, 2023). People tend to overestimate the probabilities of unlikely events and underestimate the

probabilities of very likely events.

Grether (1980) model proposes a parsimonious way to modify Bayes’s rule which allows ac-

commodation of over- and under-inferences from either or both the prior and the signals. This

model is parameterized by parameters (c,d) which captures the degree to which updating deviates

from the Bayesian one. Specifically, Anne’s posterior given signal s = 1 can be written as

as=1 =
ac0θ

d

ac0θ
d + (1− a0)c(1−θ)d

The model collapses to the Bayes’s rule when c = d = 1. Otherwise, the parameter c controls

the weight on the prior, and the parameter d controls the weight on the new information. Both
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Figure 4: Observed versus Bayesian posteriors

Anne’s own beliefs Anne’s beliefs about Bob’s conditional posteriors

Notes: The left panel uses data from treatment T0 as well as Part 1 from treatments T1 and T2, while the right panel

uses the data from Part 2 of treatment T1. In both panels, we exclude degenerate corner priors.

parameters matter in determining how sensitive Anne’s posterior is to her initial beliefs and newly

received signals.

Regression (1) in Table 3 reports estimates of parameters (c,d) for Anne’s own beliefs when

she receives new information. Our results are consistent with the canonical findings in the lit-

erature established for the belief-updating tasks with so-called balls-and-urns experiments and

induced beliefs: both parameters c and d are significantly smaller than the Bayesian benchmark

(Benjamin, 2019). This means that people tend to under-infer from both the new information they

receive and their own homegrown genuine priors. Regression (2) distinguishes between neutral

and politically charged statements and shows that people put similar weight on their priors in

both cases but update less in light of new evidence related to political statements.

Anne’s Corner Beliefs. Corner beliefs are degenerate, and, by definition, unchangeable. If you

are absolutely sure that a statement is either true or false, then no new evidence should alter

your conviction, and your opinion of the statement should remain unchanged. Our experiment

provides one of the first empirical evidence evaluating this prediction.23

How often do people report corner beliefs? That depends on the statement. The fraction of

corner beliefs ranges from 11% to 49% per statement, with an average of 22%. Some participants

are more likely to report the corner beliefs than others. However, as Figure 12 in Appendix shows,

23Note that, by design, both signals are conceivable even when one holds a corner prior. This is true because the
signals are only partially informative: conditional on the state, there is a positive chance of receiving either a signal
that coincides with the state or contradicts it. Thus, a participant cannot learn from a signal that their prior is wrong.
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Table 3: Anne’s Own Posteriors and Anne’s Beliefs about Bob’s Conditional Posteriors, estimates
of Grether model

Dependent Variable = ln [Posterior odds]

Anne’s own beliefs Anne’s beliefs about All together
Bob’s conditional beliefs

reg (1) reg (2) reg (3) reg (4) reg (5) reg(6)
ln [Prior odds] 0.55∗∗ (0.02) 0.55∗∗ (0.02) 0.31∗∗ (0.04) 0.27∗∗∗ (0.04) 0.31∗∗ (0.04) 0.29∗∗ (0.04)
ln [Likelihood ratio] 0.46∗∗ (0.02) 0.47∗∗ (0.02) 0.43∗∗ (0.04) 0.43∗∗∗ (0.04) 0.47∗∗ (0.04) 0.42∗∗ (0.04)
ln [Prior odds]

x Political -0.02 (0.05) 0.70∗∗ (0.32)
ln [Likelihood ratio]

x Political -0.09∗∗ (0.04) -0.17∗∗ (0.09)
ln [Prior odds] x Anne 0.26∗∗ (0.04)
ln [Likelihood ratio]

x Anne 0.04 (0.04)
ln [Prior odds]

x Same Priors 0.38∗∗∗ (0.08)
ln [Likelihood ratio]

x Same Priors 0.04 (0.08)
Nb obs n = 3534 n = 3534 n = 865 n = 865 n = 865 n = 4261
Nb participants i = 581 i = 581 i = 195 i = 195 i = 195 i = 582
R-squared 0.4433 0.4443 0.2956 0.3116 0.3068 0.4193

both parts in T0 both parts in T0
Data Part 1 in T1 and T2 Part 2 in T1 both parts in T1

Part 1 in T2

Notes: We express Grether’s formula in the log form, i.e., ln as=1
1−as=1

= c · ln a0
1−a0

+ d · ln θ
1−θ . This implies a linear

relationship between the posterior odds, the prior odds, and the likelihood ratio. We estimate this relationship using

linear regression with the standard errors clustered at the individual level. We exclude Anne’s degenerate priors in reg

(1), (2), and (6) and Bob’s degenerate priors in reg (3) - (6). Political is an indicator of two politically charged statements

(the GPD growth and the foreign aid spending). Anne is an indicator of Anne’s own posteriors. Same is an indicator

that Anne’s and Bob’s priors are within 5 p.p. from each other. ∗∗ indicates significance at the 5% level.

participants rarely report corner beliefs for more than 4 statements out of 12 in total.24

Do people take corner beliefs seriously? The data in part 3 of the experiment provides some

insights into this question. Recall that in this part, we offer participants a choice between a safe

payment of $10 and a risky bet which pays $11 if one’s reported corner belief is correct and nothing

otherwise. About three-quarters of participants who reported a corner belief chose the risky bet

in the last part of the experiment. We take this evidence as supportive of the fact that people do

originally believe in their corner priors. Taking such a risky bet makes sense only if one has little

doubt about correctly assessing the truthfulness of the statement.25

Do people update corner beliefs? Figure 5 depicts the CDFs of Anne’s posteriors after receiv-

24Recall, that Figures 9 and 10 present the histograms of prior beliefs for each statement observed in T0. Participants’
priors in the other two treatments T1 and T2 are very similar to those in T0 and are omitted for brevity.

25Focusing on participants whose last surprise round involved the statement where they reported a corner belief
and received a signal about that statement—i.e., the ’own beliefs’ portion of the experiment—we find that they are
more likely to choose the risky bet when the signal confirms their prior belief than when it contradicts it. Specifically,
participants with confirming signals chose the risky bet over 80% of the time, compared to approximately 65% for
those with contradicting signals.
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ing either a confirming original prior signal (left panel) or a contradicting original prior signal

(right panel). We pool the data from both corners and redefine all corner beliefs to be one. The

confirming signal is, then, a more likely signal conditional on the state being one, while the con-

tradicting signal is the less likely signal.26 The red thick lines depict updating for corner beliefs,

while black solid and dashed lines provide a benchmark of how Anne updates her beliefs when

her prior is close to the corner but still interior.

Figure 5: How Anne updates her own corner beliefs

Confirming signals Contradicting signals

Notes: We plot the CDFs of Anne’s normalized posteriors of Anne from Part 1 in all treatments. The normalized prior

equals to 100 - elicited prior for priors below 50 and equals itself for the priors above 50. The confirming signal is a

more likely signal and the contradicting signal is the less likely signal conditional on the statement being true (100%

correct),

When Anne receives a confirming signal, she rarely updates (left panel of Figure 5). The

median posterior, in this case, is 100, the average is 92, and it is significantly different from Anne’s

posterior when she has a slightly lower prior between 90% and 99% and similarly receives a

confirming signal (p < 0.001). However, when Anne receives a contradicting signal (right panel of

Figure 5), she updates her beliefs substantially. The median belief in this case is 80, the average is

63, and it is not significantly different from the posterior beliefs of Anne whose prior is between

90% and 99% and who similarly receives a contradicting signal (p = 0.152). This evidence suggests

that corner beliefs are not really corners: people are willing to change their minds in light of

new evidence that goes against their prior beliefs, even when they were initially certain in their

opinion.

26Say, a participant believes that the statement is correct with probability 100% and receives a signal which is 90%
accurate. The positive signal is a confirming signal, as it confirms the original belief of a participant. The negative
signal, however, is a contradicting one, as it goes against one’s prior.
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Observation 3: When updating her own beliefs, Anne underinfers both from her prior and from new
information. The underinference from new information is stronger for politically charged statements.
Corner beliefs are not really degenerate, they are malleable to some degree and can be updated in light of
contradictory evidence.

5.2 How Anne Thinks Bob Updates His Beliefs

The right panel in Figure 4 depicts Anne’s guesses about Bob’s conditional posteriors as a function

of Bayesian posteriors. For both signal accuracies, we observe a familiar inverse S-shape similar

in form to Anne’s own posteriors (left panel). The shape similarity between the left and the right

panels in Figure 4 is consistent with Anne projecting her way of updating onto how she thinks

others update, albeit larger deviations from the Bayesian predictions for Anne’s own posteriors

compared to Bob’s posteriors.27 Regression (3) presented in Table 3 confirms what we see in Figure

4: Anne thinks that Bob, like her, underinfers both from new evidence and from his prior, i.e.,

cBob < 1 and dBob < 1. Regression (6) shows that Bob’s underinference from the prior is stronger

than her own, i.e., cBob < cAnne.

Figure 6: Bob’s conditional posteriors after receiving a signal as a function of his prior

Test Accuracy 65% Test Accuracy 90%

Notes: Each panel depicts Bayesian posteriors and Grether’s posteriors for two signal realizations conditional on the

parameters (c,d). The left picture is for weak signals (accuracy 65%), while the right is for strong ones (accuracy 90%).

The two underinferences (from the prior and from the signals) are important as they compress

Bob’s conditional posteriors towards a 50/50 belief and result in Anne believing that Bob’s poste-

riors are not as responsive to Bob’s priors as Bayesian theory predicts or as Anne’s own beliefs re-

spond. Figure 6 illustrates this point and plots Bayesian posteriors as well as posteriors predicted

27Loewenstein et al. (2002) show that people project their current tastes on their future selves. Danz et al. (2024)
show evidence that people project their own biases on others. We document that people project the way they update
on how others do so when encountering new evidence.
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by the Grether model for (c,d) = (0.5,0.5) and (c,d) = (0.25,0.5). The latter parameters correspond

roughly to those estimated in regression 6 of Table 3, which are based on Anne’s observed beliefs

about Bob’s conditional posteriors. Both figures illustrate the compression and flattening effects

previously discussed. First, the general tendency of individuals to underinfer from new informa-

tion and priors flattens conditional posteriors relative to Bayesian predictions. This substantially

reduces the predicted difference in posteriors for two signal realizations (compare the black lines

to the red lines). Second, stronger underinference from one’s prior—represented by a lower pa-

rameter c leads to conditional posteriors that are even less responsive to the prior (compare the

red and the blue lines, holding d fixed). Both effects are crucial for understanding why the quality

of information has a limited impact on Anne’s beliefs about Bob’s expected posteriors.

Four more patterns regarding Bob’s conditional posteriors are worth noting. First, regression

(5) in Table 3 distinguishes between the types of statements Bob encounters. Interestingly, Anne

thinks that Bob puts a significantly higher weight on his prior and a significantly lower weight on

the new evidence for politically charged statements relative to the neutral ones. In other words,

Anne believes that relative to the neutral statements, Bob’s posteriors regarding political state-

ments will be close to his priors and new information will not have much effect on these priors.

Second, another manifestation of projection bias is evident in Anne’s susceptibility to base-

rate neglect and her predictions about Bob’s likelihood of exhibiting the same bias. The base-rate

neglect in its pure form suggests that a decision-maker completely ignores their prior and, for

instance, after receiving a positive signal with 90% accuracy updates their posterior to 90%.28

Using individual-level data, we find a strong and significant correlation between the number of

questions where Anne exhibits perfect base-rate neglect and the number of questions where she

believes Bob will do the same: corr = 0.59 (p < 0.01).

Third, Bayesian theory posits that Anne’s beliefs about Bob’s conditional posteriors are inde-

pendent of her prior. Regression (4) shows that this prediction does not match our data as Anne

thinks that Bob will put more faith in his prior when he shares the same prior as she does.

Fourth, Anne also projects her own way of updating corner beliefs on Bob. Anne thinks that

Bob’s corner beliefs are not set in stone, especially when he receives a signal that contradicts his

initial prior. Figure 15 in the Appendix shows trends similar to those in Figure 5, illustrating

the similarity between how Anne updates her corner beliefs and what Anne thinks about Bob’s

updating his corner beliefs. There is minimal updating when the signal aligns with the initial

prior, but significant adjustment when the signal contradicts it.

Observation 4: Anne projects the way she updates her beliefs on the way she thinks others do. Anne
thinks that Bob underinfers both from his prior and from new evidence and that Bob’s corner beliefs may
shift, just like hers. Compared to her own updating process, Anne thinks Bob underinfers from his prior
to a larger degree than she does herself. For political statements, Anne believes that new information is
quite ineffective at moving Bob’s beliefs, and his posteriors will not differ much from his priors. Overall,

28Base-rate neglect is one of the most prevalent biases in decision-making, garnering considerable attention in the
literature due to its persistence and widespread occurrence (Benjamin, 2019; Esponda et al., 2023; Gneezy et al., 2023).
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Anne expects Bob’s posteriors to be less responsive to both his prior and information quality compared
to what the Bayesian theory predicts.

5.3 What Anne Thinks about Signal Distribution

The last element in the equation determining Bob’s expected posteriors is signal distribution. In

the Bayesian world (Section 2), the likelihood of receiving a positive signal depends linearly on

Anne’s prior belief and the signal accuracy:

Pr[s = 1] = a0θ + (1− a0)(1−θ) (2)

However, the evidence presented so far, documents systematic deviations from the Bayesian model.

How do these deviations affect Anne’s beliefs about signal frequencies? This is what we study in

this section.

Note, that understanding what Anne thinks about signal frequencies is an inference exercise,

since we do not directly observe Anne’s beliefs about signal distribution.29 We therefore proceed

as follows. We start by formulating several alternative behavioral models that describe how Anne

may form beliefs about signal frequencies. The models we consider are either based on the behav-

ioral patterns documented above or are popular models in the literature relevant to our setting.

We examine the general properties of these models and compare their predictions with those of

the Bayesian model. In Section 5.4, we estimate these models using data from treatment T2 and

evaluate their ability to fit the data.

The first model is that of Grether (1980). As documented in Section 5.1, Anne tends to un-

derinfer both from her prior a0 and from signals, the accuracy of which is depicted by parameter

θ. Grether’s model is summarized by two parameters (c,d) and it does a good job at tracking the

deviations of Anne’s beliefs from the Bayesian ones. Applying this model to signal frequencies

requires some normalization to guarantee that both frequencies are bounded between zero and

one and sum up to one. Incorporating these restrictions, we arrive at

Pr[s = 1] =
ac0θ

d + (1− a0)c(1−θ)d

ac0θ
d + (1− a0)c(1−θ)d + ac0(1−θ)d + (1− a0)cθd

(3)

A crucial feature of the Grether and the Bayesian models is that Bob’s prior does not play a role

in determining signal frequencies; the latter is solely based on Anne’s prior and signal accuracy.

The second model we consider differs from the Grether and Bayesian models in that it allows

for social exchange. Anne, upon observing that Bob holds a different prior from her own, takes this

29One could envision an experiment in which Anne’s beliefs about signal frequencies are elicited, in addition to her
beliefs about Bob’s average posteriors. However, we chose not to pursue this approach out of concern that it might be
leading and could alter how people naturally think about others’ average posteriors. For instance, consider someone
who does not instinctively break down Bob’s average posterior into signal frequencies and Bob’s conditional posteriors.
If asked a question that prompts this decomposition, they might learn to focus on signal frequencies as a crucial
element, even though they might not have done so on their own without such a suggestion.
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into account and revises her prior to ã. She then formulates signal frequencies as suggested by the

Bayesian model in equation 2, using the revised prior ã instead of her original prior a0.

We follow the model of social exchange by Yuksel and Oprea (2022) to define how Anne revises

her prior after observing Bob’s prior. This model suggests that Anne takes Bob’s prior at ‘face

value’. That is, Anne believes that Bob’s prior b0 is an additional signal about the state of the

world, i.e., the truthfulness of the statement, with a likelihood ratio being b0
1−b0

. Thus, we can

express the revised prior odds ratio as

log
ã

1− ã
= α · log

a0

1− ao
+γ · log

b0

1− b0
(4)

Parameters (α,γ) govern the weight that Anne puts on her prior relative to Bob’s prior, and can

be estimated from the collected data. If Anne was fully Bayesian, then α = 1 and γ = 0 indicating

that Anne is fully confident in her prior and learns nothing from Bob’s prior. If, on the contrary,

γ > 0 then Anne adjusts her prior after observing Bob’s prior.

While the Grether and the Social Exchange models are obviously different, they share two

properties. First, both flatten signal frequencies with respect to Anne’s own prior relative to the

steepness embedded in the Bayesian benchmark. Second, for a fixed Anne’s prior, both reduce the

difference in signal frequencies across more and less precise signals. Figure 7 demonstrates this

point by plotting Anne’s estimation of the probability that Bob will receive a positive signal as a

function of Anne’s prior. The left panel focuses on signals with high precision, θ = 0.65, and the

right one on signals with low precision, θ = 0.9. In both panels, the black lines depict the Bayesian

benchmark, the red lines are for the Grether model, and the blue lines are for the Social Exchange

model.

The two effects described above and depicted on Figure 7 are important for the following

reason. In the Bayesian world, the substantial difference in Bob’s expected posteriors for signals

of different quality is driven by the significant difference in the likelihood of receiving positive and
negative signals in two information structures. This is captured by a large difference in the slopes

of the two black lines across panels in Figure 7. Contrary to that, in Grether model, the difference

between the two red lines is significantly smaller and not very responsive to Anne’s prior. This

means, that Anne expects Bob to receive signals with similar likelihoods regardless of whether he

is exposed to a high- or a low-accuracy information structure and regardless of her own prior. The

same conclusion follows from examining the Social Exchange model (the blue lines).

Observation 5: Compared to the Bayesian benchmark, Anne expects signal frequencies to be less re-
sponsive to her own prior and the quality of information Bob consumes. This conclusion holds regardless
of the behavioral model Anne uses to formulate signal frequencies.
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Figure 7: Signal Frequencies

Test Accuracy 65% Test Accuracy 90%

Notes: For each behavioral model, we plot the probability that Anne assigns to Bob receiving a positive signal as a

function of Anne’s own prior. For Grether’s model, we use c = d = 0.5. For the social exchange model, we use weight

α = 0.75 on Anne’s own prior and weight γ = 0.25 on Bob’s prior. We compute Anne’s revised beliefs given these

weights and plot three lines: the solid line is for Bob’s high prior b0 = 0.8, the dashed line is for Bob’s intermediate

prior b0 = 0.5, and the dotted line is for Bob’s low prior b0 = 0.1.
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5.4 Bringing All Pieces Together

In Section 4.2, we have documented partial support for the IVP property. Consistent with this

property, Anne predicts that, in general, information will bring Bob’s expected posterior closer to

her own prior. However, in contrast with this property, Anne predicts that these posterior moves

are similar for information sources with different accuracy. The analysis of Anne’s own updating

process and her beliefs about Bob’s updating process presented in the previous sections helps us

understand why this might be the case. We identified two ”flattening effects” that jointly reduce

the disparity in average posteriors predicted for signals of varying strength. The first flattening

effect reflects Bob’s diminished sensitivity to conditional posteriors, while the second captures

the reduced responsiveness of signal frequencies to both signal accuracy and Anne’s prior beliefs.

Together, these effects result in Bob’s expected posteriors remaining relatively stagnant, showing

limited responsiveness to the quality of information he encounters.

We’ve discussed two behavioral models that can account for the effect of ‘average posteriors

being less responsive to information quality than predicted by the Bayesian model’. Both models

use Grether’s framework to calculate Anne’s and Bob’s posteriors conditional on signal realiza-

tions. The two models differ in how signal frequencies are computed; the fully Grether’s model

uses Grether’s logic to compute signal frequencies, while the Social Exchange model allows Anne

to revise her prior after observing Bob’s prior before formulating signal frequencies.

Table 4 estimates both models and compares their fit to the Bayesian benchmark. We perform

this exercise twice: once using all observations and modifying corner priors to close but non-

corner values (the top part) and once excluding the corner priors (the bottom part). The modifi-

cation of corner beliefs is warranted given our analysis of how people update their corner priors,

which shows that corner priors are not degenerate and can change as new evidence arrives.30

To compare the fit we run a simple linear regression of observed posteriors on the predicted

ones, clustering standard errors at the individual level, i.e.,

Observed Posterior = β0 + β1 · Predicted Posterior + ε. (5)

The best fit is achieved when β0 = 0 and β1 = 1.

Two patterns emerge from Table 4. First, the estimated parameters (c,d) for Anne’s own updat-

ing and Anne’s beliefs about Bob’s updating are similar to those presented in Sections 5.1 and 5.2,

and display the same qualitative patterns. In particular, Anne thinks that Bob’s under-inference

from new evidence is similar to her own, i.e., dAnne = dBob. At the same time, Anne thinks that

Bob under-infers from his prior more than she does herself, i.e., cAnne > cBob.31

Second, both models perform very well at explaining deviations from the Bayesian benchmark.

Among the two of them, we favor Grether’s model since it uses fewer parameters than the model

30Similar modification is done in the analysis of Enke and Graeber (2023).
31We cannot reject the hypothesis that dAnne = dBob. We obtain p = 0.24 (p = 0.55) for Grether model using all data

(data without corners). We obtain p = 0.10 (p = 0.11) for Grether + Social Exchange model using all data (data without
corners). At the same time, we reject the hypothesis that cAnne = cBob in all specifications of all models (p < 0.01).
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Table 4: Parameter Estimates and Model Fit for Behavioral Models

Anne’s parameters Bob’s parameters Revised prior Model fit
(cAnne,dAnne) (cBob,dBob) (α,γ) β0 β1 root MSE

All data
Bayesian 0.28∗∗ (0.01) 0.55∗∗ (0.01) 0.2522
Grether (0.36,0.43) (0.30,0.47) 0.08∗∗ (0.01) 0.94∗∗ (0.02) 0.2461
Grether + Social (0.39,0.40) (0.26,0.45) (1,1) 0.14∗∗ (0.01) 0.82∗∗ (0.02) 0.2517

Exchange

Without corners
Bayesian 0.27∗∗ (0.01) 0.57∗∗ (0.01) 0.2303
Grether (0.49,0.41) (0.33,0.43) 0.07∗∗ (0.01) 0.96∗∗ (0.02) 0.2288
Grether + Social (0.48,0.40) (0.32,0.46) (1,0.58) 0.06∗∗ (0.01) 0.97∗∗ (0.02) 0.2278

Exchange

Notes: The estimates of each model are presented alongside the model fit (see equation 5). We use data from all parts

of all treatments. The top part of the table uses all data including the corner priors, where corner priors of 100% and

0% are replaced by 99% and 1%, respectively. The bottom part of the table excludes these corner priors.

that combines elements of Grether’s model and the Social Exchange and has a similar or better fit.

Magnitudes of Two Flattening Effects. Here, we measure the relative importance of the two

flattening effects. We do that through the prism of Grether’s model which, as we’ve argued above,

is an elegant and parsimonious way of organizing our data.

Table 5: Decomposition of the Combined Flattening Effect

Conditional Signal Model Fit
Posteriors frequency β0 β1 root MSE

(1) Bayesian Bayesian 0.28∗∗ (0.01) 0.55∗∗ (0.01) 0.2522
(2) Bayesian Grether 0.19∗∗ (0.01) 0.73∗∗ (0.02) 0.2553
(3) Grether Bayesian 0.07∗∗ (0.01) 0.96∗∗ (0.02) 0.2440
(4) Grether Grether 0.08∗∗ (0.01) 0.94∗∗ (0.02) 0.2461

Notes: We use all the data from all treatments and modify corner priors from 100% and 0% to 99% and 1%, respectively.

The results are similar when we exclude corner priors (see Table 7 in Appendix).

Table 5 performs a decomposition exercise and turns on/off the two flattening effects one at

a time. The first row is the Bayesian benchmark, where both the signal frequencies and Bob’s

conditional posteriors are assumed to be Bayesian. This model is a good benchmark but does

not fully account for behavioral patterns observed in our experiments. Allowing either signal

frequencies or conditional posteriors to follow Grether’s model improves the fit significantly, with

the latter modification outperforming the former one. The last row is Grether’s model, where both

elements follow Grether’s logic. The message from this table is clear: the lack of sensitivity in

Bob’s average posteriors to information quality is predominantly driven by the lack of sensitivity

in Bob’s conditional posteriors. In fact, the model in which Anne uses Bayesian signal frequencies

performs just as well as the one in which she augments signal frequencies through the lens of

Grether’s model.
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Observation 6: Grether’s model offers a parsimonious explanation for the lack of responsiveness in
average posteriors to information quality. This non-responsiveness is primarily driven by the lack of
sensitivity in Bob’s conditional posteriors to the information quality he is exposed to.

Magnitudes of Anne’s Mistakes. How accurately does Anne predict Bob’s expected posteriors?

Figure 8 illustrates the differences between Bob’s actual and Anne’s predicted posteriors for signals

with 90% accuracy using the estimated parameters of Grether’s model reported in Table 4.32 In

the figure, positive mistakes are represented by blue circles, while negative mistakes are shown

as orange circles. The size of each circle, along with the number inside it, indicates the magnitude

of the mistake for a specific pair of Anne’s and Bob’s priors, with Anne’s priors depicted on the

horizontal axis and Bob’s priors on the vertical axis. A positive mistake means Anne predicts

Bob’s expected posterior to be lower than it actually is. Conversely, a negative mistake indicates

the opposite, i.e., Anne’s prediction about Bob’s expected posterior is higher than it is.

Figure 8: The difference between Bob’s actual average posteriors and Anne’s prediction of Bob’s
average posterior based on estimates of Grether’s model, signal accuracy 90%

Notes: For each pair of Anne and Bob’s priors, the size of the mistake is represented by the bubble size, with the exact

value displayed inside the bubble. Anne’s priors are shown on the horizontal axis, while Bob’s priors are depicted on

the vertical axis. Both priors take values of 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99. The mistake estimates

are derived using the parameters of Grether’s model reported in Table 4 for the dataset excluding corner beliefs. Blue

bubbles represent positive mistakes, where Anne overestimates Bob’s expected posterior (i.e., she believes Bob’s poste-

rior is higher than it actually is). In contrast, orange bubbles indicate negative mistakes, where Anne underestimates

Bob’s expected posterior (i.e., she believes it is lower than it actually is).

32We use parameters reported in the second-to-last row of Table 4. The figure depicts mistakes for the following
values of priors: 0.01, 0.1, 0.2, ..., 0.9, and 0.99. A similar analysis for weak signals with 65% accuracy is provided in
Figure 16 in the Appendix, showing similar results.
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Figure 8 demonstrates that, apart from extreme priors, Anne is fairly accurate in predicting

Bob’s expected posteriors. For all priors except the most extreme cases (0.01 and 0.99), the predic-

tion errors are at most 7 percentage points, which is remarkably good. The largest mistakes occur

for highly polarized priors. For example, when Anne holds a prior of 0.01 and attempts to predict

Bob’s expected posterior given his prior of 0.99, she overestimates the extent to which Bob’s belief

shifts towards hers predicting that Bob’s expected posterior will be 12 percentage points lower

than it actually is. Similarly, when Anne’s prior is 0.99 and she predicts Bob’s posterior given his

prior of 0.01, Anne again overestimates the magnitude of Bob’s shift toward her high prior by 12

percentage points, resulting in a negative mistake.

These errors are consistent with the estimates of Grether’s model reported in Table 4. As we’ve

shown, Anne believes that Bob places less weight on his own prior than he actually does, i.e.,

cBob < cAnne. Consequently, when the two have very extreme and polarized priors, Anne thinks

that Bob will on average shift further away from his prior relative to what he actually does. This

highlights the limitations of Anne’s predictions in such scenarios.

Observation 7: Anne is quite accurate in predicting movements in Bob’s expected posteriors. How-
ever, the largest errors arise when Anne and Bob hold highly polarized and extreme priors. In these cases,
Anne overestimates the extent to which Bob’s beliefs shift toward her own due to information.

6 Conclusions

This paper provides empirical evidence on how people think others revise their beliefs in response

to new information. Our findings show that individuals generally believe others’ beliefs follow

the Martingale property—i.e., from an ex-ante perspective, new information cannot systemati-

cally shift beliefs in one direction. However, we find only partial support for the Information

Validates the Prior (IVP) property. Specifically, while people do expect new information to bring

others’ beliefs closer to their own effectively reducing polarization of opinions, the degree of this

adjustment is less sensitive to information quality than predicted by the Bayesian model. This

reduced sensitivity stems from flatter-than-expected conditional posteriors and signal frequen-

cies. Moreover, we observe that even extreme or ”corner” beliefs are not entirely degenerate, as

individuals are open to revising them, and they believe others will do the same when confronted

with contradictory evidence.

Our findings carry important implications for various strategic environments. The rigidity of

others’ beliefs and their limited responsiveness to information quality can be both advantageous

and disadvantageous, depending on the setting. From a policy standpoint, a lack of responsive-

ness to high-quality information is often problematic, as information campaigns are designed to

shift public beliefs, influence subsequent actions, and regulate markets. However, in certain sce-

narios, this reduced sensitivity may prove beneficial. To illustrate, consider the voluntary testing

game, in which an agent with private knowledge about their ability or product quality can choose

to undergo a costly test that generates an independent public signal of quality. The agent’s payoff
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is based on the market’s posterior belief of their quality minus the cost of testing. Kartik et al.

(2021) theoretically demonstrate that, under standard informational assumptions, more informa-

tive tests lead to lower participation rates. However, our results suggest that participation will be

less responsive to test quality, which, in this case, might be a welfare-improving outcome.

Our findings have also implications for information design literature. When people anticipate

others to be relatively unresponsive to the quality of information, it may be more effective to

expose them to a sequence of weak signals than a single strong signal, even if the collection of

weak signals in theory conveys the same amount of information as a strong signal alone. We are

hoping future research will provide empirical evidence on response to these types of information

framings.
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7 Appendix

In this section, we present additional data analysis, which is referenced in the paper.

Table 6: Differences in Anne’s and Bob’s beliefs before and after Bob consumes new evidence when
Anne and Bob have different priors, but the difference is at most 40 pp, in absolute terms.

Bob’s prior is 5 to 40 pp different from Anne’s prior

Anne’s prior
all extreme intermediate close to uniform

mean (se) med mean (se) med mean (se) med mean (se) med
before info 21.4 (0.4) 20 17.4 (0.6) 10 23.9 (0.7) 23.5 26.7 (1.2) 30
info acc 90% 18.8 (1.0) 15 13.8 (1.4) 10 22.8 (1.6) 20 22.7 (1.6) 25
info acc 65% 17.4 (0.9) 13 17.6 (1.3) 11.5 16.2 (1.4) 12 18.1 (1.9) 15
p-value

before vs 90% p < 0.001 p < 0.001 p = 0.399 p = 0.045
before vs 65% p < 0.001 p = 0.537 p < 0.001 p < 0.001
90% vs 65% p = 0.175 p = 0.033 p = 0.001 p = 0.051

Notes: The table reports the difference between Anne’s and Bob’s prior beliefs in the first row and the differences

between Anne’s beliefs about Bob’s expected posterior and her own prior in the second and third rows. The second

and the third rows differ by signal accuracy. We focus exclusively on cases where Anne and Bob have different priors.

Entries marked n/a indicate instances with fewer than 10 observations. Anne’s prior is categorized into three groups:

extreme priors (below 20 or above 80), close-to-uniform priors (between 40 and 60), and intermediate priors (those

between 20 and 40 or between 60 and 80).
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Figure 9: Statements and Anne’s Prior Beliefs (treatment T0, part 1)

Notes: We present all statements used in the experiment and Anne’s prior beliefs for each statement. The dashed line

indicates the value of the prior used in Part 2 of T1 and T2, i.e., Bob’s prior.
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Figure 10: Statements and Anne’s Prior Beliefs (treatment T0, part 2)

Notes: We present all statements used in the experiment and Anne’s prior beliefs for each statement. The dashed line

indicates the value of the prior used in Part 2 of T1 and T2, i.e., Bob’s prior.
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Figure 11: Changes in Bob’s beliefs when Anne and Bob have different priors for politically-
charged statements (statements 3 and 6)

Notes: The left panel depicts the CDFs of the absolute differences between Bob’s and Anne’s priors, as well as the

absolute differences between Bob’s expected posteriors and Anne’s priors. The right panel displays the differences

between Bob’s expected posteriors and Anne’s priors, broken down by each level of prior disagreement. The analysis

in both panels focuses on cases where Anne and Bob have different priors.

Figure 12: How Often Anne Reports Corner Beliefs in All Rounds?

Notes: We present the histogram of the number of statements in which corner belief is reported at the individual level.

Data is from both parts in treatment T0.
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Figure 13: Anne’s estimates of Bob’s expected posteriors vs Bayesian predictions, by information
structure

Anne’s prior below Bob’s prior Anne’s prior above Bob’s prior

test accuracy 65% test accuracy 65%

Anne’s prior below Bob’s prior Anne’s prior above Bob’s prior

test accuracy 90% test accuracy 90%

Notes: We plot the CDFs of the differences between Bob’s Bayesian-predicted posterior expectations and Anne’s esti-

mates of these values, by signal accuracy. The top plots are for signal structure with accuracy 65% and the bottom

plots are for the signal structure with accuracy 90%. The plots are separated into cases where Anne’s prior is lower

than Bob’s (left panels) and cases where Anne’s prior is higher than Bob’s (right panels). The data is sourced from Part

2 of treatment T2.
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Figure 14: Anne’s estimates of Bob’s expected posteriors vs Bayesian predictions when Anne’s
priors are extreme

Anne’s prior below Bob’s prior Anne’s prior above Bob’s prior

Notes: We plot the CDFs of the differences between Bob’s Bayesian-predicted posterior expectations and Anne’s esti-

mates of these values. We focus on cases in which Anne’s prior is extreme, i.e., below 20 or above 80. The plots are

separated into cases where Anne’s prior is lower than Bob’s (left panel) and cases where Anne’s prior is higher than

Bob’s (right panel). The data is sourced from Part 2 of treatment T2.

Figure 15: How Anne Thinks Bob Updates his Corner Beliefs

Notes: The figure depicts two CDFs, one for what Anne thinks Bob’s posterior will be after observing a confirming

signal and one for a contradicting signal. In both cases, Bob starts from the degenerate prior equal to 100. The data is

from Part 2 of treatment T1.
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Table 7: Decomposition of the Combined Flattening Effect

Posteriors Signal Model Fit
cond on a signal frequency β0 β1 root MSE

(1) Bayesian Bayesian 0.27∗∗ (0.01) 0.57∗∗ (0.01) 0.2303
(2) Bayesian Grether 0.17∗∗ (0.01) 0.76∗∗ (0.02) 0.2346
(3) Grether Bayesian 0.06∗∗ (0.01) 0.97∗∗ (0.02) 0.2275
(4) Grether Grether 0.07∗∗ (0.01) 0.96∗∗ (0.02) 0.2288

Notes: We use the data from all treatments but exclude corner priors.

Figure 16: The difference between Bob’s actual average posteriors and Anne’s prediction of Bob’s
average posterior based on estimates of Grether’s model, signal accuracy 65%

Notes: For each pair of Anne and Bob’s priors, the size of the mistake is represented by the bubble size, with the exact

value displayed inside the bubble. Anne’s priors are shown on the horizontal axis, while Bob’s priors are depicted on

the vertical axis. Both priors take values of 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99. The mistake estimates

are derived using the parameters of Grether’s model reported in Table 4 for the dataset excluding corner beliefs. Blue

bubbles represent positive mistakes, where Anne overestimates Bob’s expected posterior (i.e., she believes Bob’s poste-

rior is higher than it actually is). In contrast, orange bubbles indicate negative mistakes, where Anne underestimates

Bob’s expected posterior (i.e., she believes it is lower than it actually is).

39



7.1 Alternative Structural Models

In this section, we estimate beliefs’ revisions through alternative structural models proposed in

the literature and run the horse race between these models. We do this separately for Anne’s own

beliefs and Anne’s beliefs about Bob’s conditional posteriors. We consider four alternative models:

1. BAYESIAN model, according to which the posterior-odds ratio depends on signal precision

θ and Anne’s prior a0, i.e.,
as=1

1− as=1
=

a0

1− a0
· θ

1−θ

2. BASE-RATE NEGLECT (BRN) model, according to which Anne completely ignores her prior

and, as a result, the posterior-odds ratio depends only on the signal-odds ratio, i.e.,

as=1

1− as=1
=

θ
1−θ

3. COGNITIVE IMPRECISION model of Woodford (2020), according to which Anne misper-

ceives signal strength but otherwise uses the Bayes’ rule. In particular, we follow Augenblick

et al. (2024) paper and define the true signal-odds ratio as S = log
(
θ

1−θ

)
and perceived signal-

odds ratio as E
(
Ŝ
)

= k ·Sβ . Then, the difference between posterior-odds and prior-odds ratios

in log terms can be written as

log
(
as=1

1− as=1

)
− log

(
a0

1− a0

)
= log(k) + β · log

( θ
1−θ

)
.

Using this formulation, we can estimate the two parameters of this model (k,β).

4. GRETHER model used in the paper, according to which the posterior-odds ratio in log terms

can be written as

log
(
as=1

1− as=1

)
= d · log

( θ
1−θ

)
+ c · log

(
a0

1− a0

)
and we estimate the two parameters of this model (c,d) which represent how Anne under-

/over- infers from her own prior and from the new signal she receives.

To judge which behavioral model fits our data best, we run a simple linear regression of observed

posteriors on the predicted ones, clustering observations at the individual level:

Observed Posterior = const + intercept ·Predicted Posterior + ε.

The best fit is achieved when the estimated constant is close to zero, the estimated intercept is

close to one, and the value of the mean-squared errors is small.
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Table 8 presents the results and shows that Grether’s model emerges as a clear winner among

the considered alternatives. This model captures most variation in Anne’s own posteriors as well

as Anne’s beliefs about Bob’s conditional posteriors and significantly improves the fit relative to

the Bayesian model, the BRN model, and the cognitive imprecision model.

Table 8: Comparing the fit of different behavioral models

BRN BAYESIAN COGNITIVE GRETHER
IMPRECISION

Anne’s own posteriors
const 0.33∗∗ (0.01) 0.27∗∗ (0.01) 0.21∗∗ (0.01) 0.12∗∗ (0.01)
intercept 0.48∗∗ (0.02) 0.55∗∗ (0.02) 0.63∗∗ (0.02) 0.84∗∗ (0.02)
root MSE 0.2514 0.2239 0.2312 0.2217
Bob’s conditional posteriors
const 0.36∗∗ (0.02) 0.35∗∗ (0.02) 0.34∗∗ (0.02) 0.16∗∗ (0.03)
intercept 0.40∗∗ (0.04) 0.44∗∗ (0.03) 0.42∗∗ (0.03) 0.80∗∗ (0.05)
root MSE 0.2470 0.2341 0.2481 0.2320

Notes: For Anne’s own posteriors, we use data from both parts in T0 and part 1 in T1 and T2. For Anne’s beliefs about

Bob’s conditional posteriors, we use the data from Part 2 in T1. In all estimations, we exclude corner priors and corner

posteriors. This is done to maintain with results reported in Table 3 and general comparability across models. This is

because Grether’s and Woodford’s models involve logs of prior-odds and posterior-odds ratios and, as a result, are not

defined for corner priors and posteriors.

As a final exercise, we take the cognitive imprecision model and the estimated parameters

of (k,β) obtained by Augenblick et al. (2024) and ask what would these estimates predict in our

experiment. Augenblick et al. (2024) obtains k = 0.88 and β = 0.76 which imply very close to

Bayesian posteriors for low-precision signals (65% accuracy) and significant underinference rela-

tive to Bayesian posteriors for high-precision signals (90% accuracy). These predictions do not fit

our data as Figure 4 clearly shows.

Our discussion above supports the use of the Grether model for analyzing revisions of beliefs

in a structural manner.

41


	Introduction
	Connection to the Literature

	Conceptual Framework
	Experimental Design
	Discussion of Experimental Design

	Results
	Martingale property
	IVP property

	Unpacking Aggregate Results
	How Anne Updates Her Beliefs
	How Anne Thinks Bob Updates His Beliefs
	What Anne Thinks about Signal Distribution
	Bringing All Pieces Together

	Conclusions
	Appendix
	Alternative Structural Models


