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1. INTRODUCTION

IN THE CONTEXT OF SOCIAL NETWORKS, imitation is the act of following a decision made
by one of the agent’s neighbors. Proposition 2 in Chandrasekhar, Larreguy, and Xandri
(2020) characterizes when imitation is optimal in a discrete-time setup where all agents
are myopic Bayesian and this is common knowledge. In this note, we provide a correc-
tion to this result, where the condition for imitation to be optimal is stronger than in the
original result.

This correction bears no additional implications on the original paper. The other propo-
sitions and theorems, the reduced form results, the simulations, and the estimations are
all unaffected by this correction. The important message of the original paper is as clear
as it was before: we need to treat the population of agents that act on the network as a
mixed population of Bayesian and naive agents, and to account for the uncertainty that
emerges from the unobservability of these types.

Notwithstanding, showing that imitation is optimal less frequently than suggested in
the original paper is consequential. Theoretically, it reduces the set of networks in which
the optimal dynamics is such that a few dominant agents determine the beliefs of all net-
work members. Experimentally, it lowers the baseline rates of imitation. We first provide
the setup; then we provide two counterexamples to Proposition 2 in Chandrasekhar, Lar-
reguy, and Xandri (2020). We conclude with the correct version of the imitation proposi-
tion and its proof.

2. SETUP

Agents are located on an undirected, unweighted network G = 〈V �E〉 where V =
{1�2� � � � � n} is the set of agents and E is the set of pairs, such that {i� j} ∈ E (hence-
forth denoted by ij ∈ E) implies that agent i and agent j are directly connected in G.
Ni ={j : ij ∈E} denotes the set of agent i’s direct neighbors in G (N�

i =Ni ∪{i}).
Agents attempt to learn the state of nature, θ, which takes two values θ ∈ {0�1}. A pri-

ori, Pr[θ = 0] = 0�5. The time is discrete, t ∈{1�2� � � �}. Before the first round, each agent
receives a private signal about the state. The signal of agent i is denoted by si ∈ {0�1}.
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Given the state, signals are i.i.d. and have precision p:

Pr[si = 0|θ = 0] = Pr[si = 1|θ = 1] = p ∈
(

1
2
�1

)
�

In each round t, each agent chooses one of two possible actions, 0 or 1. The action of
agent i in period t is denoted by ai�t ∈ {0�1}. Agents have perfect recall, that is, in each
round t ∈ {2� � � �}, before making a decision, each agent observes her own past choices
and those made by her direct neighbors in all previous rounds.

Agents are assumed to be Bayesian and myopic utility maximizers and this is common
knowledge. That is, in each round, each agent states her best guess regarding the majority
of the private signals based on her own signal and the actions taken by her direct neighbors
in all previous rounds.

3. PROPOSITION 2 IN CHANDRASEKHAR ET AL. (2020)

DEFINITION: Agent j is strictly better informed than agent i if N�
i �N�

j , denoted by j� i.

Note that j � i has three useful properties. First, since i �= j, agents i and j are direct
neighbors. Second, the inclusion is strict, that is, there is at least one agent k such that
k ∈ Nj and k /∈ Ni. Third, if agent j has the same information as agent i and more, then
agent j has a finer information structure than agent i. By Green and Stokey (1978), it
means that agent j is more informed than agent i and, therefore, by Blackwell (1953), she
has higher expected payoffs.

Assuming a common knowledge that all agents are myopic Bayesian utility maximizers,
Proposition 2 in Chandrasekhar, Larreguy, and Xandri (2020) states that agent i imitates
agent j if agent j is strictly better informed than agent i. That is, if j� i then ∀t ≥ 3 : ai�t =
aj�t−1.

This condition is too weak to guarantee that imitation is an optimal course of behavior
for a myopic Bayesian utility maximizing agent. The reason is two-fold. First, the set of
agents that are better informed than agent i may include more than one agent. In this
case, it is not clear who should agent i imitate. Second, imitation means that agent i uses
information in a lag of one period compared to agent j. Hence, if agent i has an alternative
way to acquire the information simultaneously with agent j, she may find it optimal to use
this information immediately rather than wait a period.

4. TWO COUNTEREXAMPLES

We provide two counterexamples. The first counterexample demonstrates a case where
imitation by the original Proposition 2 in Chandrasekhar, Larreguy, and Xandri (2020) is
not optimal. The second counterexample shows that even if the player has multiple other
players to potentially imitate, by the original Proposition 2 in Chandrasekhar, Larreguy,
and Xandri (2020), it might be optimal for her to imitate none of them.

4.1. The Case of One Influential Player

Consider the network depicted in Figure 1. For the sake of this example, assume that
p = 0�7 and the signals received by the agents are s1 = s2 = s3 = s4 = 0, while s5 = s6 =
s7 = s8 = s9 = 1.

In the first period, every i ∈ {1�2�3�4} chooses ai�1 = 0 while every i ∈ {5�6�7�8�9}
chooses ai�1 = 1. In the second period, the agents aggregate their local information and
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FIGURE 1.—First counterexample.

keep their first round choices, that is, every i ∈ {1�2�3�4} chooses ai�2 = 0 while every
i ∈{5�6�7�8�9} chooses ai�2 = 1.

After observing the guesses of period 2, agent 1 knows that s1 = s2 = s3 = 0, s5 = 1, she
cannot deduce the signal that agent 4 received but can be sure that at least 3 of agents 6, 7,
8, and 9 got the signal 1 (since otherwise agent 5 would have guessed a5�2 = 0). Therefore,
before period 3, there are eight possible cases for agent 1 (unconditional probability in
parentheses):

1. The state is 0, agent 4 got 0 and one of agents 6 − 9 received 0 (0�5 × 4 × (0�7)5 ×
(0�3)4).

2. The state is 0, agent 4 got 1 and one of agents 6 − 9 received 0 (0�5 × 4 × (0�7)4 ×
(0�3)5).

3. The state is 0, agent 4 got 0 and all agents 6 − 9 received 1 (0�5 × (0�7)4 × (0�3)5).
4. The state is 0, agent 4 got 1 and all agents 6 − 9 received 1 (0�5 × (0�7)3 × (0�3)6).
5. The state is 1, agent 4 got 0 and one of agents 6 − 9 received 0 (0�5 × 4 × (0�7)4 ×

(0�3)5).
6. The state is 1, agent 4 got 1 and one of agents 6 − 9 received 0 (0�5 × 4 × (0�7)5 ×

(0�3)4).
7. The state is 1, agent 4 got 0 and all agents 6 − 9 received 1 (0�5 × (0�7)5 × (0�3)4).
8. The state is 1, agent 4 got 1 and all agents 6 − 9 received 1 (0�5 × (0�7)6 × (0�3)3).

Conditional on these eight possible cases, the probability of the state being 1 is 133
226 >

1
2 , so

agent 1 should guess a1�3 = 1.1 But, if agent 1 would have behaved in accordance with the
original Proposition 2 in Chandrasekhar, Larreguy, and Xandri (2020) she should have
imitated agent 3. Therefore, she would have been nonoptimal in period 3 (should guess 1
but guesses a1�3 = a3�2 = 0).

4.2. The Case of Two Influential Players

Consider the network depicted in Figure 2. For the sake of the example, assume that
p = 0�7 and the signals’ received by the agents are s1 = s2 = s3 = s4 = 0, while s5 = s6 =
s7 = 1.

1It can be shown that in period 3, agents 2, 3, and 4 choose 0 while the others choose 1. This reveals to agents
1 and 5 that agent 4 got the 0 signal (s4 = 0). Agent 5 also understands that agent 2 got 0. As a result, in period
4, agent 1 switches back to 0. However, since agent 5 continues to choose 1 also in period 4, although she
understands that s1 = s2 = s3 = s4 = 0, agents 1 and 3 realize that agents 6 − 9 all got the signal 1. Therefore,
agents 1 and 3 switch to 1 in period 5 and by round 6 there is a consensus on the state being 1.
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FIGURE 2.—Second counterexample.

In the first period, every i ∈ {1�2�3�4} chooses ai�1 = 0 while every i ∈ {5�6�7} chooses
ai�1 = 1. In the second period, the agents aggregate their local information and keep their
first round choices, that is, every i ∈ {1�2�3�4} chooses ai�2 = 0 while every i ∈ {5�6�7}
chooses ai�2 = 1. After observing the guesses of period 2, agents 3 and 4 deduce that both
agents 6 and 7 received the signal 1 since otherwise agent 5 would have guessed a5�2 = 0.
In addition, agents 3 and 5 deduce that at least one of agents 1 and 2 received the signal
0 since otherwise agent 4 would have guessed a4�2 = 1.

Therefore, in period 3, since nothing has changed for them, agents 1 and 2 choose 0
(a1�3 = a2�3 = 0) while agents 6 and 7 choose 1 (a6�3 = a7�3 = 1). Agent 4 already knows
the exact signal distribution and, therefore, chooses 0 (a4�3 = 0). Agents 3 and 5 know
that agents 3 and 4 received 0 signals and agents 5, 6, and 7 received 1 signals. Therefore,
there are six possible cases (unconditional probability in parentheses):

1. The state is 0 and both agents 1 and 2 received 0 (0�5 × (0�7)4 × (0�3)3).
2. The state is 0, agent 1 received 1 and agent 2 received 0 (0�5 × (0�7)3 × (0�3)4).
3. The state is 0, agent 1 received 0 and agent 2 received 1 (0�5 × (0�7)3 × (0�3)4).
4. The state is 1 and both agents 1 and 2 received 0 (0�5 × (0�7)3 × (0�3)4).
5. The state is 1, agent 1 received 1 and agent 2 received 0 (0�5 × (0�7)4 × (0�3)3).
6. The state is 1, agent 1 received 0 and agent 2 received 1 (0�5 × (0�7)4 × (0�3)3).

Conditional on these six possible cases, the probability of the state being 1 is 17
30 > 1

2 , so
agents 3 and 5 guess 1 (a3�3 = a5�3 = 1).2 In period 4, agents 3 and 5 understand that agent
4 already knew the signal distribution in the previous period and, therefore, imitate her,
a3�4 = a5�4 = 0. Learning is complete in period 5 when agents 6 and 7 imitate agent 5
(a6�5 = a7�5 = 0).

If agents behaved in accordance with the original Proposition 2 in Chandrasekhar, Lar-
reguy, and Xandri (2020), agent 3 should have imitated either agent 5 or agent 4. In both
cases, agent 3 would be nonoptimal in at least one of the periods: If agent 3 had imitated
agent 5, then she would have been nonoptimal in period 4 (should guess 0 but guesses
a3�4 = a5�3 = 1); If agent 3 had imitated agent 4, then she would have been nonoptimal in
period 3 (should guess 1 but guesses a3�3 = a4�2 = 0).

5. CORRECTED PROPOSITION ABOUT IMITATION

DEFINITION: Denote the subset of neighbors of agent i that are strictly better informed
than agent i and all her other neighbors by

C(i) = {
j ∈ Ni|∀k ∈ N�

i \{j} : j � k
}
�

2For agents 3 and 5, the conditional probability of agents 1 and 2 both receiving 0 is only 1
3 .
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FIGURE 3.—Illustration of C(i).

Figure 3 demonstrates this definition on a simple network. Note that the agent depicted
by “...” represents some subgraph. The sets of neighbors are N1 ={2�3�4}, N2 ={1�3�5},
N3 = {1�2�4�5}, N4 = {1�3� � � �}, N5 = {2�3}. The “more informed” relations are 3 � 1,
3 � 2, 3 � 5 and 2 � 5. Hence, C(1) = C(3) = C(4) = ∅, while C(2) = C(5) ={3}.

PROPOSITION 1: Let G=< V �E > be a network, and let i ∈ V . Then C(i) is either empty
and imitation could lead to suboptimal behavior by agent i or it is a singleton, C(i) ={j}, and
∀t > 2 : ai�t = aj�t−1 is optimal for agent i.

Using the example in Figure 3, Proposition 1 implies that agents 2 and 5 should imitate
agent 3 since she is better informed than all the agents in their local neighborhood. Agent
1, however, should not imitate agent 3 (even though agent 3 is better informed) since
agent 3 is not better informed than agent 4 who is a neighbor of agent 1. The reason is
that when new information arrives through agent 4, both agent 1 and agent 3 see it at the
same time. Hence, imitation, in this case, may lead to suboptimal actions.3

PROOF OF PROPOSITION 1: First, we formally define the notion of histories for each
agent. The history agent i observes at the beginning of period t > 1 is ht

i :N�
i ×{1� � � � � t −

1} → {0�1}. Note that ht
i is defined starting t = 2 since when taking the decision on the

action in period 1, the agent has no observations on herself or her neighbors’ previous
actions.

Second, we show that C(i) is either a singleton or an empty set. Assume that j1 �= j2, j1 ∈
C(i)� and j2 ∈ C(i), that is, j1 and j2 are two distinct neighbors of agent i that belong to
C(i). Since j1 ∈C(i), we get that ∀k ∈N�

i \{j1} : j1 �k. In particular, since j2 is a neighbor
of agent i we get j1 � j2. That is, N�

j2
�N�

j1
. Since the inclusion is strict, N�

j1
�⊂ N�

j2
. Hence,

j2 � j1. Therefore, there exists a neighbor of agent i such that agent j2 is not strictly better
informed than her, that is, j2 /∈C(i). Contradiction. Therefore, |C(i)|≤ 1.

Third, we show that if j ∈ C(i) then agent i would want to imitate agent j, that is,
∀t ≥ 3 : ai�t = aj�t−1. Consider agent j ∈ C(i). Then agent j is strictly better informed than
agent i and all her other neighbors (∀k ∈ N�

i \{j} : j � k). Therefore, the information in
ht−1
j includes the information in ht−1

k for every k ∈N�
i \{j}. That is, for every k ∈ N�

i \{j},
ht−1
k is the restriction of ht−1

j to N�
k. Since all the agents are myopic Bayesian, for every

k ∈ N�
i \{j}, agent j can calculate ak�t−1 before observing it at the beginning of period t.

3Chandrasekhar, Larreguy, and Xandri (2020) present their subjects with three network structures of seven
nodes each. The original version and our corrected proposition disagree only on agent 1 in network 3 who
resides in a similar position to agent 3 in Figure 2. For this node, Chandrasekhar, Larreguy, and Xandri (2020)
conclude that she should imitate one of her two neighbors while our corrected version states that she should
avoid imitation. It is important to note that none of the results in the original paper is affected by this discrep-
ancy (including Panel B in Table 1).
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Hence, every guess agent i observes in the beginning of period t (∀k ∈N�
i : ht

i(k� t −
1)), was already calculated by agent j using ht−1

j alone.4 Therefore, we conclude that the
information included in ht

i is embedded in ht−1
j . Therefore, when agent i wishes to make

her guess at period t she understands that the observations that were at agent j’s disposal
at the previous period were at least as informative as her complete set of observations
and, therefore, it is optimal for her to guess at

i = at−1
j . Q.E.D.
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