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1 Introduction

Since the seminal contribution of Baron and Ferejohn (1989), there has been an extensive

literature on experimental legislative bargaining (see the surveys of Palfrey (2015) and

Agranov (2022)).1 These studies have focused on situations in which the size of a budget

to be distributed is a fixed quantity. While this represents a certain class of situations,

there are many cases in which the size of the surplus to be divided may change over time,

and moreover, players cannot write contracts addressing all future contingencies. This is

rather commonplace even in the financial sector where many creative contracts are avail-

able. One such example lies in Chapter 11 bankruptcies. Claimants need to decide on

whether to accept or reject proposals on how to restructure the firm. During this nego-

tiation process, new information may arrive impacting the value of the firm, but never-

theless, the negotiated reorganization plans cannot, and in practice do not, reflect all the

possible contingencies that might affect the value of the bankrupt firm after it emerges

from bankruptcy (see Eraslan (2008)).

The bargaining rules in stochastic settings are far from uniform, in particular, there is

variation in the voting threshold required to reach an agreement. An example can be found

in the realm of sovereign debt restructurings (see Benjamin and Wright (2019) and cita-

tions therein). An interesting feature of sovereign debt negotiations is the cross-country

variations of the bargaining mechanism. Specifically, bonds governed by New York law re-

quire unanimous consent to change the core payment terms of the indenture, while bonds

governed by English law require a majority of the creditors to agree.2 This cross-country

variation in voting rules raises the question of the desirability of the unanimity rule vis-à-

vis the majority rule. In this paper, we use laboratory experiments to answer this question

in a multilateral bargaining setting with a stochastic surplus.

Given the risk of receiving no payment in the future, the players who are offered a

positive share (the members of the coalition) when the surplus is relatively small may be

induced to accept the proposal if they expect to be excluded from future agreements when

the surplus is relatively large.

This mechanism explaining the potential inefficiency of the majority rule relative to

the unanimity rule does not seem to depend on the missing complexities of the real world

such as risk aversion. Indeed, we extend the theoretical analysis of Eraslan and Merlo

(2002) and show that under risk aversion, continuation payoffs are weakly higher under

the unanimity rule, and if there is a delay under majority there is a delay under unanimity,

1The first experiments of Baron-Ferejohn model are McKelvey (1991), Frechette, Kagel, and Lehrer (2003),
and Diermeier and Morton (2005). For a meta-analysis, see Baranski and Morton (2022).

2About 45% of the outstanding international sovereign bonds are governed by English law and about 52%
by New York law IMF (2020).
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but the converse is not true.3

As the name implies, a stochastic model of multilateral bargaining is an economic

model. As such it is “an artificial world that is designed to reveal connections that are

otherwise hard to discern."4 Nonetheless, it is important to understand whether complex-

ities left out of the model would change the key result on the different incentives affecting

the timing of agreement under different voting rules in a stochastic environment. One

way to address this robustness question is through lab experiments. Given the difficulty

of fully controlling rationality, preferences, and information of the subjects, experiments

are well suited to study if these missing details matter. In this paper, this is precisely

what we do by experimentally comparing the unanimity and majority rules in a stochastic

bargaining framework in terms of delays and the distribution of surplus.

Our experimental design consists of a series of bargaining experiments in which a com-

mittee with three members allocates a budget for a given voting rule and stochastic process

that governs the evolution of the budget size. We run several treatments that vary along

two dimensions. The first is the voting rule which is either the simple majority (M) or the

unanimity (U) rule. The second is the size of the budget: in the M48 and U48 treatments,

the budget is $24 in the first bargaining round, but if an agreement is not reached, the

budget can be either $24 or $48 with equal probabilities in each future round; in the M96

and U96 treatments, the budget is $24 in the first bargaining round, but if an agreement

is not reached, the budget can be either $24 or $96 with equal probabilities in each future

round. In addition to our stochastic treatments, in order to tie our paper to existing litera-

ture, we also run two deterministic ones, the M24 and U24 treatments, in which the size of

the budget is fixed at 24. In all treatments, subjects had access to an unrestricted commu-

nication tool that they could use to send messages to each other (Agranov and Tergiman,

2014).

The criterion that we use to compare institutions is that of small-budget delays, that

is, delaying agreement when the budget is small, which is a pre-requisite for reaching

efficient outcomes when delays are socially desirable. Under our parameters, the small-

budget delays are indeed socially desirable when the players are risk neutral as in the

benchmark model.5 As we describe in detail in Section 2, the three parameterizations we

employ create three qualitatively distinct situations that differ in terms of whether or not

3See Proposition 1 in Appendix A.
4The following passage from Rodrik (2015) illustrates this point succinctly: “But what are economic mod-

els? The easiest way to understand them is as simplifications designed to show how specific mechanisms work
by isolating them from other, confounding effects. A model focuses on particular causes and seeks to show
how they work their effects through the system. A modeler builds an artificial world that reveals certain parts
of connection among the parts of the whole – connections that might be hard to discern if you were looking
at the real world in its welter of complexity."

5We also show that small-budget delays are socially desirable when players are risk averse with a CRRA
utility function that is consistent with the risk attitudes we elicited (see Appendix A).
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delays are predicted to happen in equilibrium: (a) both voting rules are expected to result

in immediate agreement (U24 and M24 treatments), (b) both voting rules are expected to

result in delays (U96 and M96 treatments), and (c) only the unanimity rule is expected

to create delays (U48 treatment versus M48 treatment). These predictions are derived in

the theoretical benchmark setting in which committee members have an identical single

date payoff function, which is linear in their surplus share, and discount future bargaining

rounds at the rate of 20%. In the experiment, we implement discounting using the stan-

dard technique of random termination which occurs at the end of each bargaining round

(see Roth and Murnighan (1978)).

We find strong support for the main theoretical insight, namely, that in a stochastic

environment, the unanimity rule leads to more delays compared with the majority rule

when the expected future surplus is sufficiently higher than the current surplus, and even

when in the benchmark theory both rules should result in equal levels of small-budget

delays. As predicted, in the 48 treatments, the unanimity rule results in small budgets

being delayed at a much higher rate than under the majority rule (80% versus 54% in

the U48 and M48 treatments respectively). This difference also holds in the 96 treatment

(95% versus 73% in the U96 and M96 treatments respectively), despite the theoretical

prediction that both rules should result in equal levels of small-budget delays. We note

that in the U96 treatment, the levels of small-budget delays are very close to the 100%

point prediction.

The advantages of the unanimity rule in a stochastic environment that we document

in this paper stand in contrast to prior laboratory experimental findings that compared

the two voting rules in a deterministic setting, that is when the budget size is fixed. In

these situations, while the theory predicts no differences across voting rules in terms of

agreement, in practice the unanimity rule can result in more inefficient delays (Miller and

Vanberg (2013)).6 So although the drawback of the unanimity rule seems to exist in a

deterministic world, our experimental results show the advantages of the unanimity rule

over the majority rule in a stochastic one.

While the qualitative predictions of the model hold, we note deviations from point pre-

dictions, particularly in the Majority treatments. Indeed, subjects in the M48 treatment

delay too often (by over 50 percentage points), but delay not often enough in the M96 treat-

ment (by 27 percentage points). What might account for this seeming puzzle? Data from

a separate investment task as well as our theoretical contribution that extends the model

beyond risk-neutral players point to risk aversion as a likely explanation. While we find

no difference across treatments in subjects’ risk attitudes, we do find that on average sub-

jects are risk averse. This pushes subjects away from delays regardless of the voting rule,

but in the Majority treatment the impact is stronger because, in addition to the exogenous

6The subjects in our deterministic treatments exhibit behavior that aligns with these past findings.
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risk of random termination, subjects face the endogenous risk of being left out of a future

coalition. Thus risk aversion has a differential impact across voting rules and can explain

why subjects delay less under the majority rule compared with the unanimity one, even

in the 96 treatments. Regarding the M48 treatment, the risk-neutral benchmark already

predicts no delays. Instead, we observe delays in excess of 50%. What is then countering

the impact of risk aversion? As we discuss further below, in the laboratory, proposals are

often more egalitarian than predicted, and subjects often discuss fairness, even in the Ma-

jority treatments, lowering the risk of exclusion. This works towards increasing delaying

behavior. In short, the combination of risk attitudes, how big the size of the future budget

may be, and how likely one is to be excluded from a future winning coalition can jointly

explain the patterns in our data.

Next, we explore the origins of delays. In the game we analyze, delay can arise for

one of two reasons: either the proposer does not submit a proposal, or, a proposal is sub-

mitted but does not receive the required number of votes. Regardless of the agreement

rule, the theory is silent regarding the origins of delays when delays are predicted. In the

experiments, we uncover interesting differences in the origins of delays for small budgets

between the two voting rules. For the 48 treatments, the proposers behave largely the same

under the two agreement rules: 51% of proposers forgo making a small-budget proposal

in the M48 treatment and 52% do so in the U48 treatment. The reason there are more

delays in U48 than in M48 rests almost entirely on the voting behavior of the committee

members: when a small-budget proposal reaches the floor in the M48 treatment, only 7%

of them are rejected: voters go along with the proposal on the table. In the U48 treatment

this fraction is significantly higher and reaches 58%. Further, we find that the rejection

of these inefficient proposals in the U48 treatment is due to a single vote in almost half

of the cases, showing the importance of the voting rule itself in reaching efficient, i.e.,

small-budget delays.

The explanation behind the higher levels of small-budget delays in U96 relative to

the M96 treatment is two-fold. In addition to delays arising due voters’ rejection of the

proposals dividing the small budget more often in the U96 treatment compared with the

M96 treatment (68% versus 15%), we see that proposers are significantly more likely to

forgo making a proposal under the unanimity rule than under the majority rule (83%

versus 68%).

After establishing that small-budget delays occur more often in the Unanimity treat-

ments than in the Majority treatments, we show that these findings are robust to control-

ling for proposal types. Specifically, we find that equal split proposals dividing the small

budget are more likely to fail under U48 than under M48 treatments (43% versus 4%) and

they are also more likely to fail under U96 than under M96 treatments (65% versus 3%).

These rates are even more striking when compared with the passage rates of equal split
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proposals when the surplus is not stochastic. Both in the U24 and M24 treatments, equal-

split proposals almost always pass and there is no difference in the passage rates between

these two treatments (97% versus 99%).

The next set of results focuses on the distribution of payoffs among the players. We

show that under the unanimity rule, regardless of the size of the future budget, outcomes

are more equal than under the majority rule. In fact, budgets are almost always equally

split among all committee members in the former case, while in the latter the resources

are shared by two of the three committee members between 39% and 57% of the time

depending on the treatment and the size of the budget at hand. Thus, not only does the

unanimity rule lead to more efficient delays, it also results in a more equal allocation of

resources.

Finally, we explore the relationship between communication and a decision to delay

implementing a small budget. Under the unanimity rule, the only risk in delaying is the

exogenous termination of the game. Under the majority rule a second risk is present: the

risk of being excluded from a future budget proposal. We find that both of these elements

are discussed in both treatments. In particular, conversations about the risk of game ter-

mination are negatively correlated with proposers’ tendency to delay splitting the small

budgets in all treatments. At the same time, conversations about equality and the size

of the future budget are positively correlated with proposers delaying splitting the small

budget only in the Majority but not in the Unanimity treatments. An interpretation of

these results is consistent with the re-assurance effect according to which conversations

about fairness and equality reduce the risk of being excluded from future coalitions. Such

re-assurance is crucial in the Majority treatment but plays no role in the Unanimity treat-

ment, in which three-way equal splits are considered a fait accompli.This last effect points

to the fragility of efficient decision-making under majority voting rule.

Related literature. Our paper joins the experimental literature on legislative bargain-

ing, which is extensive (see Palfrey (2015) and Agranov (2022) for surveys, and Baranski

and Morton (2022) for a meta-analysis). Therefore, we focus our review on the subset of

papers that compare the performance of various voting rules. Miller and Vanberg (2013,

2015) study how different voting rules affect delay in bargaining in small and large com-

mittees. Contrary to the predictions of stationary equilibria, committees take longer to

reach agreements under the unanimity rule compared with the majority rule. This points

to a weakness of the unanimity rule when the setting is deterministic in terms of future

budget size.7

The papers discussed above consider bargaining with a fixed rather than a stochastic

7Allowing for communication between bargainers can decrease the frequency of delays as shown in Agra-
nov and Tergiman (2019)
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budgets.8 This is an important distinction since delay in bargaining with a fixed budget

leads to a sure loss of efficiency for impatient bargainers. The setup we study here, i.e.,

bargaining with stochastic budgets is different since efficiency balances the two opposing

forces: the desire of the committee to wait for the realization of a large budget and the cost

of such delay. The first paper that introduced stochastic bargaining is Merlo and Wilson

(1995). They study a model under the unanimity rule for a general class of games in which

the shape of the budget is unrestricted. While still staying under the unanimity rule,

Merlo and Wilson (1998) studied the case where the budget is a simplex of random size

and the players share a common discount factor, and established the existence of a unique

stationary subgame perfect payoff. The only experimental paper that we are aware of that

utilizes the Merlo and Wilson (1995) setting is Li and Houser (2020). The focus of their

work is quite different from ours. They study a two-person two-stage bargaining game

in which the budget either expands or shrinks deterministically between stages but the

process determining the identity of the proposer is stochastic. In contrast to our focus on

the comparison of voting rules, Li and Houser (2020) compare outcomes in bargaining over

gains with that of bargaining over losses. Their experimental results show that efficiency

matters. In particular, the most common outcome in both cases is the equal split of the

largest available resource.

Finally, our paper relates the dynamic bargaining game of Battaglini, Nunnari, and

Palfrey (2020) in the sense that their game features different but still endogenous budgets

across periods due to dynamic public good provision. The authors manipulate the voting

rules used by the group to reach agreements and find that, in line with the theoretical

predictions, there is higher investment in public goods as well as smaller debt when the

larger majorities are required to reach an agreement. Despite the differences in our settings

and the different tensions that exist in the Battaglini, Nunnari, and Palfrey (2020) model,

our results connect with theirs in the sense that higher efficiency can be obtained with

higher majority requirements.

Structure of the paper. The paper is organized as follows. The first part of Section 2

presents the setup and derives broad equilibrium predictions focusing on the comparison

of efficiency levels between the two voting rules. The second part of Section 2 outlines

game parameters used in our experiments and specific predictions for each treatment.

Section 3 details the experimental procedures. Section 4 presents our experimental results,

starting with our main result on the levels of small-budget delays and their origins across

8There also exists a small experimental literature on dynamic bargaining. Most related to our study is
Battaglini, Nunnari, and Palfrey (2012). The authors present a legislative bargaining model in which public
and private goods are decided in each period over an infinite horizon. They show that the unanimity rule
leads to higher long-run public investment than the majority rule. Thus, like us, they find support for the
unanimity rule from an efficiency perspective.
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treatments, before describing the distribution of payoffs and the impact of communication

chats between bargainers. Section 5 offers some conclusions. The appendices contain

proofs, experimental instructions, additional material regarding how conversations were

coded, and extensions of some of the data analyses present in the main text.

2 Setup

In this section, we start by presenting the game we use to study the efficiency of majority

and unanimity voting rules. We then turn to the discussion of the main theoretical insights

regarding this environment, focusing on both qualitative and quantitative predictions.

Finally, we describe the parameters we use in our laboratory experiments and outline the

theoretical predictions for the chosen parameters.

The game. A group of n (odd) members is charged with distributing a budget among its

members using a pre-specified voting rule denoted by q. The parameter q captures the

number of votes required to agree on an allocation with q = n indicating the unanimity

voting rule and q = n+1
2 indicating the majority voting rule. The bargaining happens over

a series of (potentially infinite) bargaining rounds. Within each bargaining round, mem-

bers use the standard Baron and Ferejohn (1989) bargaining protocol. In particular, at

the beginning of each bargaining round, all group members learn the budget size for the

round, and one member is randomly selected to be the proposer. The proposer can either

submit an allocation, which is a vector of non-negative shares to all members that sums

up to the budget in the current round, or, alternatively, choose to bypass the round and

move straight to the next bargaining round without making a proposal. If an allocation is

submitted, then all group members vote on it. If the proposed allocation obtains at least

the required number of votes (q) then the allocation passes, the game is over, and all mem-

bers collect the shares specified in the passed allocation. If, however, the allocation does

not get at least q votes, then it is defeated, and the group moves on to the next bargaining

round, which has the same structure as described above.

The uncertainty in this setup is captured by the stochastic process that governs the

realization of the budget size as well as the selection of the proposer. In the first bargaining

round, the budget size is small and is denoted by y. In every bargaining round after the

first one, there is p percent chance that the budget will be small once more (y) and a (1-p)

percent chance that it will be large, ȳ, where ȳ > y.9

The group members have an identical von Neumann-Morgenstern stage utility func-

9That the first bargaining round imposes a small budget is without loss of generality. Indeed, if, instead,
the first round is also stochastic, then if a group obtains a large budget, an agreement is immediate, and for
those groups who obtain a small budget, behavior is governed as described below.
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tion that is linear in the budget allocated to them, i.e., members are risk-neutral. The

group members discount the future at a rate δ ∈ (0,1).10 In the event that an agreement is

never reached, all group members receive a payoff of zero.

General predictions. It is well known that in multilateral bargaining games, like the

one considered here, there is a continuum of subgame perfect equilibria even under the

unanimity rule (e.g., Sutton, 1986). However, it has also been recognized that stationarity

is typically able to select a unique equilibrium (e.g., Baron and Ferejohn (1989); Merlo

and Wilson (1995)). Thus, we restrict attention to stationary subgame perfect (SSP) equi-

libria. In addition, given that the members are symmetric, we further restrict attention

to symmetric and pure SSP equilibria in which all members have the same continuation

payoff which we denote by vq, and, conditional on not being the proposer, each player is

included in a winning coalition with the same probability if an offer is made.11 This prob-

ability is equal to q−1
n−1 since each proposer needs to choose q−1 other players to include in

his coalition out of the n− 1 remaining players.

To gain some intuition on the trade-offs that our setting encompasses, consider two

cases:12

(i) Delay is so costly that the members are willing to split the small budget instead of

waiting for the large budget to materialize. Assuming without loss of generality that

a member accepts a proposal when indifferent,13 this happens when y − (q − 1)δvq ≥
δvq. In this case, the equilibrium continuation payoffs must satisfy:

vq =
1
n

[
p(y − (q − 1)δvq) + (1− p)(ȳ − (q − 1)δvq)

]
+
n− 1
n

q − 1
n− 1

δvq =
py + (1− p)ȳ

n
. (1)

This case is possible if and only if ȳ ≤ c1y where c1 = n−δqp
(1−p)δq , that is, when the large

10Given binary support, the model described here rules out the possibility of a lower budget in the future.
In terms of the main theoretical results comparing unanimity rule and majority rule, this assumption is not
crucial (Eraslan and Merlo (2002)). Indeed, implicitly through discounting, a budget of y in the future is
worth less than the same budget today. In the experimental implementation, discounting is implemented
through the exogenous probability of breakdown of negotiations in which case the budget is $0. In that sense,
we allow the budget to be smaller than y in the future.

11Under unanimity rule, there is always a unique equilibrium and therefore, except in the knife-edge case
in which a proposer is indifferent between delaying and offering a proposal that will be accepted, there are
no equilibria in mixed strategies. Under majority rule, there could be multiple equilibria. When there are
multiple equilibria, one with delay and another without delay, there also exists a mixed strategy equilibrium
in which the proposer mixes between delaying and offering a proposal that will be accepted when the budget
is small. See Eraslan and Merlo (2002) for an example. In our experiments, we choose parameter values so
that when members are risk-neutral the equilibrium is unique, and therefore, mixed strategy equilibria do not
exists under the parameters of our experimental design.

12For more details, see Eraslan and Merlo (2002).
13See footnote 7 in Eraslan and Merlo (2017) for an explanation of why this assumption is without loss of

generality.
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budget is not too much larger than the small budget.

(ii) Delay is not so costly, and therefore, the members are willing to wait for the large

budget to materialize instead of reaching an agreement on the small budget. This

happens when y − (q−1)δvq < δvq. In this case, the equilibrium continuation payoffs

must satisfy:

vq =
1
n

[
pδvq + (1− p)(ȳ − (q − 1)δvq)

]
+
n− 1
n

[
pδvq + (1− p)

q − 1
n− 1

δvq

]
.

Collecting terms and rearranging, we obtain vq = ȳ 1−p
n(1−δp) . This case is possible if

and only if ȳ > c2y where c2 = n(1−δp)
(1−p)δq , that is, when the large budget is sufficiently

larger than the small budget.

The equilibrium outcome, however, does need not to be efficient. Indeed, depending

on the parameters of the game, the equilibrium outcomes under the majority voting rule

are not always efficient. At the same time, the equilibrium outcomes under the unanim-

ity rule are always efficient. The reason for this is under unanimity rule everyone has a

veto power and the incentives are aligned. On the contrary, under the majority rule, play-

ers face uncertainty of not being granted When the committee uses the unanimity voting

rule, i.e. when q = n, we have c1 = c2 = 1−δp
(1−p)δ . Consequently, either the necessary and

sufficient condition for case (i) is satisfied, or the necessary and sufficient condition for

case (ii) is satisfied, but they cannot be satisfied simultaneously. As such, the equilibrium

is unique for all possible values of ȳ, y, δ and p under the unanimity rule. In this unique

equilibrium, the committee never delays when the value of large budget is relatively small,

i.e., ȳ < 1−δp
(1−p)δy and otherwise the committee delays bargaining until the large budget is re-

alized.14 However, when a committee uses any other voting rule with q < n, multiple

equilibria might be supported since c1 > c2. Interestingly, if there is no delay under una-

nimity rule, the expected equilibrium payoffs do not depend on the voting rule used by

the committee, and only depend on the parameters of the stochastic process that governs

the evolution of budget, i.e., (p,y, ȳ) and the discount factor δ. In this case, there is no delay

under the majority rule either, and because the players are symmetric, the expected equi-

librium payoffs are identical. Likewise, if there exists a delay equilibrium under majority

14Notice that the theory is silent regarding the mechanics of how delay in bargaining occurs. It can happen
in one of two ways. In the first, the proposer can choose to forgo making a proposal, in which case the
current bargaining round ends irrespective of the desires of the other committee members. In the second, the
proposer can submit an allocation proposal, which can then be struck down by the committee members. In
that case the current bargaining round ends following other members’ behavior rather than because of the
unilateral decision of the proposer. While in theory these two ways of inducing delay are identical in terms of
the eventual outcomes they produce, there may be large behavioral differences across them. Our experimental
design allows us to examine this point and investigate whether different voting rules tend to affect the ‘type’
of the delay.
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rule, then the expected equilibrium payoff in this equilibrium is equal to the (unique)

expected equilibrium payoff under unanimity rule by the symmetry of the players. Intu-

itively, under unanimity, all players have veto power, and incentives are aligned to wait for

a larger budget when the large budget is worth waiting for. By contrast, under majority,

gains are captured only by those who will receive a positive share from the proposal that

will be ultimately be agreed upon while the cost of waiting is born by those receiving a

positive share when the budget is small. As a result, inefficient agreement on the small

cake can arise.

Efficiency comparisons. Efficiency in this setting is measured by the expected total pay-

offs received by the group members, given members’ time preferences and the stochastic

process that governs the evolution of the budget. The equilibrium outcome, however, does

need not to be efficient. Indeed, depending on the parameters of the game, the equilib-

rium outcomes under the majority voting rule are not always efficient. At the same time,

the equilibrium outcomes under the unanimity rule are always efficient. The reason for

this is under unanimity rule everyone has veto power and the incentives are aligned. On

the contrary, under the majority rule, players face uncertainty of not being granted a place

in the winning coalition. This endogenous risk is at the heart of why there may be ineffi-

cient agreements under the majority rule even when committee members are risk neutral.

The risk of not being included in the coalition is not present under unanimity, which, as

Eraslan and Merlo (2002) show, implies that equilibrium outcomes are always efficient

under unanimity. This gives rise to the main theoretical prediction we are testing in this

paper: the unanimity rule leads to (weakly) more efficient outcomes compared with the

majority rule.

As we describe in the next section, the experimental parameters of our game are such

that in all treatments with stochastic budgets, the efficient outcome features delaying the

small budget in anticipation of the large one. In other words, small-budget delays are

always efficient in our case. Given this, most of the analysis below will focus on comparing

institutions in terms of “efficient delays," that is, delaying agreement when the expected

total surplus from delaying is greater than the small budget.

Experimental parameters. In choosing our experimental parameters, our goal was to

design the simplest experiment in which uncertainty about the size of the future budget

would lead to different behavior in committees which use different voting rules, and, con-

sequently, to different efficiency levels. In particular, we focused on two voting rules com-

monly used in practice, the strict majority and the unanimity voting rules, and designed

six treatments (three per voting rule), which we describe below.

In all treatments, groups of n = 3 members interacted over a (potentially infinite) num-
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ber of bargaining rounds with a common discount factor of δ = 0.8.15 The budget size in

the first round was y = $24 in all treatments. The value of the large budget ȳ in our

stochastic treatments varied across treatments and was either ȳ = $48 or ȳ = $96. The

probability distribution over budget sizes was uniform and was the same in all bargaining

rounds after the first one and in all treatments. In addition to the stochastic treatments,

we included two deterministic ones in which the budget was always equal to 24 to link our

findings to past literature. We refer to the six treatments as M24, M48, M96, U24, U48,

and U96 indicating in the treatment label both the voting rule and the size of the large

budget, which are the only differences between treatments.

Predictions under the experimental parameters. The sizes of the large budgets in treat-

ments with ȳ > y were chosen such that they guarantee the existence of a unique equi-

librium in all Majority treatments.16 Indeed, for our parameters, we obtain c1 = c2 = 1.5

for the Unanimity treatments and (c1, c2) = (2.75,2.25) for the Majority treatments. Thus,

for the Unanimity treatments, theory predicts that players would delay splitting the small

budget both in U48 and U96, while the same behavior is predicted only when the large

budget is particularly large, as is the case in M96, for the Majority treatments. Irrespective

of the treatment, if members find themselves in a bargaining round with a large budget,

they should agree on an allocation immediately without any further delay. These predic-

tions are summarized in Table 1 in the Results section.

Risk attitudes. The analysis above focused on the case when group members are risk

neutral. As one would expect, the incentive to support the division of a small budget un-

der the majority rule when one is included in the coalition becomes even stronger when

the group members are risk-averse. We extend the theory to include risk-averse players in

Appendix A, where we show that the main theoretical result we test is robust to introduc-

ing risk-averse members. In particular, for any equilibrium under the majority rule, there

exists an equilibrium under the unanimity rule with a higher equilibrium continuation

payoff (see Proposition 1 in Appendix A). An important implication of this result is that,

if there is an equilibrium with delay under the majority rule, there is also an equilibrium

with delay under the unanimity rule but not vice versa, which is in line with the efficiency

criterion that we focus on in our analysis, i.e., small-budget delays.17

15In the next section we describe in detail how we implemented this potentially infinite horizon game in
the laboratory.

16Recall that our main setup assumes that group members are risk neutral. Also, note that under risk
neutrality, the equilibrium under the unanimity rule is always unique.

17Incorporating other real-life features in a theoretical framework could be challenging. For example, in-
troducing asymmetric information in a multilateral bargaining model is difficult even with a deterministic
surplus, and there are only a handful of papers that do so, even then, in highly stylized settings (see Eraslan
and Evdokimov (2019) for a survey).
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As we described above, our main theoretical comparison between small-budget delays

across two voting rules is robust even if subjects are risk-averse. Given our parameters and

the risk attitudes of our subjects, which we elicited at the conclusion of the experiment,

we show that an efficient equilibrium exists in both the U48 and U96 treatments, but that

under the majority rule, it is only present under the M96 but not in M48 treatment (see

Appendix A).

3 Experimental Procedures

All experimental sessions were conducted at the University of California, San Diego.18

Subjects were recruited from a database of undergraduate students. Twenty-four sessions

were conducted with 4 sessions per treatment and 12 subjects in each session, for a total

of 288 subjects. Each subject participated in only one session. Each experiment session

lasted about 90 minutes and average earnings were $25.7, including a $12 show-up fee.19

In each experimental session, subjects played twelve repetitions of the bargaining game

with random re-matching between games, i.e., between repetitions. Before the beginning

of each game, subjects were randomly divided into groups of three, i.e., each committee

consisted of three members. Each bargaining game mimicked the extensive-form game

described in Section 2. Specifically, in all sessions, committees started with a small budget

of $24 in the first bargaining round.20 Each game had an unknown number of bargaining

rounds. At the beginning of a bargaining round, the committee members learned the

size of the budget for the round and one of the three committee members was randomly

selected to be the proposer. The proposer could either submit an allocation proposal (a

vector of non-negative payments to all three members that sums up to the budget in the

current round) or, alternatively, the proposer could choose to bypass the round and move

straight to the next bargaining round without making a proposal. If the proposer chose to

submit an allocation proposal, then all committee members observed it and voted on it. If

the allocation received the required number of votes, then the bargaining game was over

and the committee members received the payoffs specified in the allocation that passed.

If the allocation did not receive the required number of votes, or if the proposer chose to

bypass the round, then the current bargaining round was over. In that case, there was

a 20% probability that the bargaining game was exogenously terminated, in which case

18We are grateful to the UCSD Economics department for allowing us to use their experimental lab to
conduct our experiments.

19In Appendix B we present the instructions for the U96 treatment. The instructions for the other treatments
are similar except for the obvious differences in voting rule and the size of the potential future budget.

20The purpose of this choice is two-fold. First, it allows us to normalize initial settings across groups and
more easily compare behavior in the different treatments. Second, when faced with a large budget, there
shouldn’t be any delays, rendering such rounds ineffective at asking whether voting rules and stochastic bar-
gaining lead to inefficiencies.
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payoffs for all group members were zero. With the remaining 80% chance the bargaining

game continued to the next bargaining round where the proposer was once more randomly

selected. In other words, we implemented the discounting with random termination of

the game, which is one of the common ways to study infinitely repeated games in the

laboratory (see Frechette and Yuksel (2017)).

To help players recall the events in the current game, a table on the screen kept track of

all the information pertaining to the current game including the proposer ID, her choice

(delay or allocation), and the votes of all group members in each bargaining round.21

Finally, after the proposer was selected at the beginning of a round but before she made

her choice, committee members had the opportunity to communicate with each other us-

ing an unrestricted chat tool. This chat tool allowed group members to send any message

they wanted to any subset of the group including private messages to just one member

and public messages that were delivered to all group members.22 There are two reasons

we allowed subjects to communicate with each other. First, it is hard to imagine a real-

life dynamic bargaining environment in which members of the same committee cannot

communicate with each other. Second, communication in multilateral bargaining games

has been shown to bring the distribution of resources closer to theoretical predictions (see

Agranov and Tergiman (2014), Baranski and Kagel (2015), and Agranov and Tergiman

(2019)), suggesting that communication channels are crucial to understanding how com-

mittees function.

At the end of the experiment, one of the twelve games that the subjects played was

randomly chosen for payment. The amount subjects earned in this randomly selected

game was added to the participation fee of $12 and paid to subjects at the end of the

experiment. In addition, subjects completed two investment tasks, à la Gneezy and Potters

(1997), that we use to evaluate subjects’ risk attitudes.23

4 Results

As the novelty of our paper lies in the stochastic nature of the budget size, our analysis

focuses on our four stochastic treatments, and we compare these outcomes with those

from our two deterministic treatments, namely M24 and U24, when relevant. We present

21We present the screenshots of the interface in Appendix C.
22The chat option was on for at least 20 seconds and lasted until the proposer submitted her allocation

or chose to delay. This 20-second period was implemented to make sure that if a group member wanted to
communicate with others, she could do so and not be interrupted by the proposer who might otherwise have
quickly entered the allocation and/or clicked delay. The instructions made the structure of the communication
process clear.

23Appendix D includes the instructions for these investment games. Appendix A presents summary statis-
tics for the two tasks across treatments. We find no statistical differences across treatments in this game, which
is why we reject that treatment differences are due to differences in the risk attitudes of our participants as
measured by this game.
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the results of our experiments in the following order. We begin with our main result

and study game dynamics, focusing on delays across treatments and exploring the origins

of delays. Second, we document the distribution of resources within a committee and

the implied inequality levels across treatments. Finally, we explore the dialog between

committee members.

Approach to data analysis. We use all twelve repetitions of the bargaining game in our

analysis and data from all bargaining rounds, since we see limited learning across these

repetitions and rounds.24 All statistical tests are performed using regression analyses.

In all regressions, we cluster observations by session to account for the interdependen-

cies that come from re-matching subjects between bargaining games. To compare average

outcomes between treatments we regress the variable of interest on the constant and an

indicator for one of the two treatments. The p-values that we report are those associated

with the estimated coefficient on the dummy for one of the treatments.

Finally, given that the theory predicts corner values for the delay, i.e, no delay for small

budgets in the M48 and 100% delay for small budgets in the remaining three treatments,

any noisy behavior would necessarily produce outcomes that are not in line with the theory

(as the noise would necessarily be one-sided). We therefore mainly focus on the qualitative

predictions of the theory.

4.1 Game Dynamics

Frequency of delays. We start by describing the frequency of delays in our stochastic

treatments, without distinguishing between delays that happen because a proposer forgoes

making a proposal and those that happen because a proposal is on the table but is rejected.

These frequencies are shown in Table 1.

Delays when facing a small budget are frequent, and more so in committees under

the unanimity voting rule than in committees under the majority voting rule: the fraction

of small-budget delays is 80% in U48 compared with 54% in M48 (p = 0.001) and these

numbers are 95% and 73% (p < 0.001) for the M96 and U96 treatments, respectively.25

These differences are not simply due to the fact that an agreement between 3 people

may inherently be harder to achieve than an agreement between 2 people. To support

this claim we focus on situations in which a proposal is on the table, i.e. the proposer

makes an offer rather than delaying. We show that when a proposal is on the table, the

size of the difference in disagreements between the U48 and M48 treatments is higher

than the difference in disagreements between our two deterministic treatments. Indeed,

24Time trends are presented in Appendix F in Tables 9 and 10.
25We replicate this table using only first-round data in Table 7 in Appendix F. The conclusions are no

different.
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Table 1: Frequency of delays

Majority Unanimity Maj vs Un

48 treatment
Large budget 2% (n=50) 9% (n=82) p = 0.062

Prediction 0% 0%

Small budget 54% (n=247) 80% (n=289) p = 0.001
Prediction 0% 100%

96 treatment
Large budget 4% (n=79) 3% (n=111) p = 0.672

Prediction 0% 0%

Small budget 73% (n=270) 95% (n=344) p < 0.001
Prediction 100% 100%

Notes: This table shows the total frequency of delays separately for small and large budgets at the group level.

This frequency encompasses cases in which the proposer chose to delay and those in which the proposal was

rejected by the committee. The last column shows the p-values from regression analyses comparing across

voting treatments for each row.

while our deterministic treatments show that disagreements also happen more frequently

under unanimity than under the majority rule (26% in U24 and 10% in M24 for a gap

of 16 percentage points, p < 0.001), a difference in differences regression shows that this

gap is smaller than the gap between rejections in the M48 and U48 treatments (which is

51 percentage points – 7% in M48 and 58% in U48).26,27 The data also show that differ-

ences in delays between the unanimity and majority treatments are always larger for small

budgets compared to large budgets in both the 48 and the 96 treatments (p < 0.001 and

p = 0.016, respectively) further supporting our observation that delays of small budgets

under unanimity are not simply due to the larger number of votes required to pass any

proposal.

Relative to the theoretical predictions, we note that while the unanimity rule produces

more delays than the majority rule in the 48 treatment as the theory predicts, the fre-

quency of delays in the M48 treatment for small budgets is substantial (more than 50%)

and, thus, should not be ignored. However, and perhaps surprisingly given behavior in

the M48 treatment, we observe significantly fewer delays in the M96 committees com-

pared with the U96 committees, going against the theory that predicts equal levels of

26We ran a probit regression where the dependent variable was passing a proposal and the independent
variables were a constant and dummies indicating whether a treatment was stochastic, whether it followed
the unanimity rule and interaction between the two. The coefficient on the interaction term was negative and
statistically significant (p = 0.017).

27We discuss the origins of delay in more detail further down in this section.
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small-budget delays in these two treatments.

Although not predicted by the benchmark risk-neutral theory, data from a separate

investment task as well as our theoretical contribution that extends the model beyond risk-

neutral players point to risk aversion as a likely explanation for these patterns.28 While we

find no difference across treatments in subjects’ risk attitudes, we do find that on average

subjects are risk averse (see Table 6 in Appendix D). This pushes subjects away from delays

regardless of the voting rule. However, risk aversion has a differential impact across voting

rules: in the Majority treatment subjects face the endogenous risk of being left out of

a future coalition in addition to the exogenous risk of random termination if a delay is

implemented. This can explain why subjects delay less under the majority rule compared

with the unanimity one, even in the 96 treatments. Regarding the M48 treatment, the risk-

neutral benchmark already predicts no delays. Instead, we observe delays in excess of 50%.

As we discuss further below, in the laboratory, proposals are often more egalitarian than

predicted, and subjects often discuss fairness, even in the Majority treatments, lowering

the risk of exclusion. This force works towards increasing delaying behavior, pushing

against the impact of risk aversion. In short, the combination of risk attitudes, how big the

size of the future budget may be, and how likely one is to be excluded from a future ruling

coalition can jointly explain the patterns in our data.

Figure 1: The proportion of small versus large budgets among budgets that are
implemented in stochastic treatments.

Implemented budgets. Aggregate outcomes in terms of the relative frequency of large

versus small budgets that are implemented among all budgets that are passed are a direct

28See Appendices A and D.
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consequence of delaying behavior. These outcomes are shown in Figure 1. Among all

budgets that are passed, large budgets are adopted 56% of the time under U48 compared

with 30% under M48 (p = 0.010); under U96 and M96 these numbers are 86% and 51%

(p < 0.001), respectively. The conclusion is straightforward: the unanimity rule leads to

higher levels of large budgets being distributed relative to the majority rule, both when

it is expected (as in the 48 treatments), but also when both rules should lead to the same

levels of large budgets passing (as in the 96 treatments).29

Origins of delays. Why are small budgets rejected? In the game we analyze, not imple-

menting a budget can come for one of two reasons: either the proposer decides to forgo

submitting a proposal, and consequently moves the group to the next bargaining round

without a voting stage, or, a proposal is submitted but does not receive the required num-

ber of votes. The figures presented in Table 1 do not distinguish these two scenarios.

Figure 2 unpacks these two situations.

Figure 2: Origins of delay for small budgets in treatments with uncertainty

Notes: This figure depicts the frequency of delays and rejected proposals in M48, M96, U48, and U96 treat-

ments conditional on the budget being small.

Figure 2 uncovers interesting differences between the two voting rules. For the 48

treatments, there is no difference in delaying behavior on the part of the proposers: the

fraction of delays implemented by proposers is about 50% in both voting rules (p = 0.815).

29These same patterns persist if we look at more generalized outcomes that include games in which no
budgets were passed because of the random termination. In this case, the fraction of large budgets passed in
the U48 and M48 treatments are 41% versus 26%, respectively (p = 0.030). These numbers are 57% and 40%
when comparing the U96 and M96 treatments (p < 0.001). In the non-stochastic environment of the U24 and
M24 treatments, these numbers are understandably 0 in both cases.
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The reason there are more delays overall in U48 relative to M48 comes from the fact that

under the unanimity rule, when a proposer does submit a proposal, it is rejected with

a much higher frequency than under the majority rule (58% in U48 versus 7% in M48,

p < 0.001). This points to the fact that departures from theory in the M48 treatment are

largely due to proposers’ choices, not voter behavior. In other words, voters tend to go

along with the proposal when one is on the table.

In the 96 treatments, proposers are significantly more likely to forgo making a proposal

under the unanimity rule than under majority rule: 83% of the proposers delay in the U96

treatment and 68% in the M96 (p = 0.015).30 When proposals dividing the small budget

are submitted, they fail to pass in the U96 treatment close to 70% of the time, while they

fail to pass only 15% of the time in the M96 treatment (p = 0.001). That is, in the U96

treatment, in a large majority of groups, voters “correct" mistakes that proposers might

make (submitting a small-budget proposal). On the other hand, under the majority rule

voters fail to correct these mistakes. Given that in both treatments the risk of exogenous

termination is the same, as is the probability of a future large budget, differences in voting

behavior cannot be ascribed to these elements. On the other hand, the treatments do

differ in terms of the probability that a player who receives a positive share in a particular

proposal may be excluded from a future one: this risk exists in the Majority treatment,

while it is nonexistent in the Unanimity treatment (an element that is the result of the

theory but that also finds strong support in the data as shown in the next subsection).

While the unanimity rule is often seen as risky in the sense that one voter can impede the

smooth functioning of a committee, what the data in our experiment point to is that it also

only takes a single committee member to (potentially) reach a larger budget and correct

mistakes that stem from proposer behavior. Specifically, if the proposer fails to bypass

making a proposal, that single voter can rectify the situation. This is not the case under

the majority rule. Our data show that small-budget proposals are rejected by a single

deciding vote in 47% and 74% of the cases in the U48 and U96 treatments, respectively.

Thus, this correction happens thanks to a single voter.31

Although the proposals dividing the small budget are not necessarily the same under

the two voting rules, this distinction is not crucial in understanding the aggregate statistics

30Individual propensities to delay show similar results and are presented in the Appendix F.
31 We also rule out that delays are more frequent under unanimity because subjects happen to experience

fewer random terminations due to the realizations of random draws. In fact, the data point to the opposite.
After small budgets were either delayed or rejected, committees in the U48 treatment experienced almost
twice as many delays due to discounting (random termination) as compared with the M48 treatment: 28.1%
vs 15.1% (p < 0.001). Similarly, the fraction of random terminations in the U96 treatment is significantly
higher than that in the M96 treatment: 33.9% vs 22.4% (p = 0.002). The qualitative differences hold even after
conditioning on groups facing a delay at least once, or controlling for the number of bargaining rounds. In
other words, players in the Unanimity treatments delay more often despite having been particularly unlucky
and experienced a higher likelihood of early termination. We refer the reader to Appendix F where we use
these random termination fractions to explain the differences in average total earnings across treatments.
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on rejection rates. Indeed, we next show that proposals dividing the small budget are

rejected by voters not because of the proposals per se (for example, they offer voters too

little) but because of the possibility that the next bargaining round’s budget might be large.

In order to show this we focus on cross-treatment differences in terms of how identical

small-budget proposals are treated by voters. The natural candidate for such a comparison

is the equal split allocation where all committee members receive an identical share (such

proposals are frequent in all treatments, see Table 2). Our data shows that the fraction of

passage rates of small-budget proposals that equally split the small budget among three

members is significantly smaller in the Unanimity treatments than in the Majority treat-

ments. Indeed, such proposals are much more likely to be accepted in the M48 compared

with the U48 treatment, 96% versus 57%, and this difference is statistically significant

(p < 0.001). Similar behavior is observed in the 96 treatment, in which 97% of equal split

three-person coalitions splitting the small budget are accepted in the M96 treatment com-

pared with only 35% in the U96 (p < 0.001). These results are even more striking given

that these three-way equal split proposals of small budgets are almost always accepted in

both voting rules in the 24 treatment (99% in M24 and 97% in U24 with p = 0.398).

Result 1: Unanimity committees are more likely than majority committees to delay and at-
tempt to reach large budgets, both when the unanimity rule is predicted to lead to more delays,
and when both rules should lead to identical levels of delays. As a result, large budgets are imple-
mented more often under the unanimity rule than under the majority rule. When delays happen
in the majority committees, they primarily occur because proposers decide to forgo the current
stage and wait for the next stage. In the unanimity committees, in addition to proposers delaying
in anticipation of a larger budget (and doing it more often, weakly speaking, than under the ma-
jority rule), group members also often strike down the small-budget allocations at a significantly
higher rate than under the majority rule (both statistically and in magnitude) leading to more
small-budget delays. These results are robust to controlling for proposal types.

4.2 Distribution of Resources within a Committee

We now turn to the question of how committees distribute resources among members

conditional on the budget size. In particular, we focus on passed proposals, or in other

words, the final payoffs of committee members, and discuss the relative inequality of the

distribution of resources across the two voting rules.

Table 2 shows the frequencies of passed coalition types and the corresponding shares of

the proposers depending on the size of the final budget appropriated. When committees

require a unanimous vote to pass a proposal, irrespective of the budget size, proposers

include all three members in the coalition and divide the resources equally among them

in all but a few instances (see the last three rows of Table 2). However, when only a simple
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Table 2: Distribution of resources within a coalition

Small Budget Appropriated Large Budget Appropriated
Two person Three person Proposer’s Two person Three person Proposer’s

freq eq split freq eq split share (av) freq eq split freq eq split share (av)
M24 44% 48% 56% 68% 10.7 . . . . .
M48 57% 66% 43% 90% 10.9 39% 53% 61% 100% 19.5
M96 44% 50% 56% 71% 10.4 50% 53% 50% 74% 42.8
U24 0% . 100% 92% 8.1 . . . . .
U48 0% . 100% 93% 8.1 0% . 100% 88% 16.2
U96 0% . 100% 100% 8.0 0% . 100% 97% 32.2

Notes: The table shows data for only proposals that passed, distinguishing between two-person and three-

person coalitions. For each coalition size, we list the frequency of observing it and how often these coalitions

divide resources exactly equally between its members.

majority is enough to pass a proposal, both two-person and three-person coalitions are

frequent. Moreover, many of the final allocations are equal splits within the coalitions,

with the fraction of equal split being generally higher in the three- than in the two-person

coalitions.32,33 Tables 11 and 12 in the Appendix present frequencies of coalition types

in submitted proposals for small budgets and their likelihood of passing, i.e., obtaining

the required number of votes. These tables show that both two-person and three-person

coalitions are commonly proposed in the M48 and M96 treatments.34 Conditional on the

coalition size, some proposals feature equal splits, while others unequal split of resources.

However, for each coalition size, equal split proposals have a higher chance of passing

compared to unequal ones.

The prominence of all-inclusive coalitions with large shares to all three members in the

M48 treatment explains in part why committees in this treatment are willing to delay until

they reach the large budget despite the theoretical prediction that they should appropriate

the small budget in the first bargaining round. Indeed, the theory predicts that only two-

person coalitions should be observed in this treatment, which makes waiting risky, as one

never knows whether one will be included in the future coalition or not. This uncertainty

is the main difference between the unanimity and the Majority treatments. Contrary to

these predictions, since in our data more than 60% of all coalitions are all-inclusive and

in their majority divide shares in three equal parts among members of the majority com-

32The p-values on Probit regressions are 0.039, 0.015, and 0.320 in the M24, M48, and M96 treatments,
respectively.

33Generally speaking, the results from the U24 and M24 treatments are aligned with past work on the topic.
See Miller and Vanberg (2013), Agranov and Tergiman (2014) and Agranov and Tergiman (2019) for example.

34Previous experimental work on the Baron-Ferejohn bargaining model suggest that the presence of all-
inclusive grand coalitions may be due to the understanding that proposers of rejected allocations face a lower
continuation value than non-proposers (see Agranov et al. (2020), Baranski and Morton (2022), and Lee and
Sethi (2021)
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mittee, waiting for the big budget becomes less risky. Put differently, the presence and the

frequency of all-inclusive coalitions partially mitigate the uncertainty that members face

in the majority committees but not in the unanimity ones. As a result, in the 48 treatment,

the empirical efficiency of majority committees is higher than theoretically predicted.

Figure 3: Final payoffs of players

0
.2

.4
.6

.8
1

EC
D

Fs
 o

f S
ha

re

0 10 20 30 40 50 60 70
Share

M48 U48
M96 U96

0
.2

.4
.6

.8
1

EC
D

Fs
 o

f G
IN

I

0 .1 .2 .3 .4 .5
GINI

M48 U48
M96 U96

Panel (A): Empirical CDFs of Payoffs Panel (B): Empirical CDFs of GINI coefficients

Notes: Panel (A) depicts the CDFs of players’ payoffs in each treatment, where zero payoff is associated with

the game termination or a zero share in the MWC. Panel (B) depicts empirical CDF’s of GINI coefficients. Here

we focus on games that did not terminate due to discounting.

Figure 3 complements Table 2 by depicting the empirical CDFs of members’ payoffs

(Panel (A)) and the empirical CDFs of the Gini coefficients (Panel (B)) in the 48 and the 96

treatments. For a fixed size of the future large budget (48 or 96), the majority committees

have much more variation in payoff distributions across committee members compared

with the unanimity committees. This echoes the results presented in Table 2, in which

we show that majority committees feature both two- and three-person coalitions with ei-

ther equal or unequal distribution of resources conditional on the coalition size, while the

unanimity committees naturally result in only three-person coalitions with mostly equal

splits among members. The voting rule also has a strong effect on the inequality of payoffs

within a committee, as the Gini coefficients show. In both 48 and 96 treatments, members

of unanimity committees all earn the same payoffs, while those in the majority committees

experience different payoffs, most of which come from two-person coalitions as described

in Table 2.

Result 2: Unanimity committees feature a more equal distribution of resources compared
with majority committees. In particular, unanimity committees divide resources equally among
their members irrespective of the budget size. Majority committees feature both two-person
and three-person coalitions and proposals often result in an equal split of resources within a
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coalition. The prominence of three-person equal split coalitions in the M48 treatment reduces
the endogenous risk of being excluded in future winning coalitions which otherwise is present in
two-person coalitions both empirically and in theory. This reduction in endogenous risk provides
a behavioral explanation for the delays observed in the M48 treatment.

4.3 Communication and Bargaining Dynamics.

For each session, two independent coders read through all the conversations. At the bar-

gaining round level they identified whether a conversation pertained to one of eleven dif-

ferent content categories in the Majority treatments, and one of eight different content

categories in the Unanimity treatments.35 The average Cohen Kappa score across all ses-

sions was 0.78 for the majority sessions and 0.73 for the unanimity ones. In our analyses

below, a conversation is counted as having broached a particular topic if at least one of the

two coders specified that such content occurred.36

The vast majority of groups engage in meaningful conversations at least once over the

course of each bargaining game: 97.9%, 92.7%, 96.3% and 91.7% of groups for the M48,

M96, U48, and U96 treatments, respectively.37

Since the main feature of our setup is the uncertainty about the size of the future

budget, we focus on it and explore the link between the content of the chats and bargain-

ing outcomes.38 Specifically, we ask whether subjects discuss the potential future budget

size and the risk associated with delaying, and whether these conversations affect the fre-

quency of delays across voting treatments.

Table 3 shows the fraction of groups that engage in various topics of conversation in the

first half of the session.39 There are many similarities in how often topics are discussed

across treatments. For the 48 treatments, the main difference in chat content between

two voting rules is how frequently subjects discuss the risk of game termination; these

discussions are more frequently raised in groups that use the unanimity voting rule than

those that use the majority voting rule. At the same time, in the 96 treatments, we observe

35These categories are described in Appendix E. There are more categories in the Majority treatment because
we also recorded whether there were conversations related to minimum winning coalitions and the division
of resources within those. The coders were not privy to our research questions and their payment depended
on how well their coding matched up with each other.

36The alternative classification of conversation topics, i.e., the one in which the conversation is coded as
having a particular topic only when both coders indicated such topic, leads to the very similar results. This is
not surprising given the high agreement across our coders. This analysis is available from the authors upon
request.

37A conversation is meaningful if group members discuss the game or anything pertaining to how to play
the game.

38We refer the reader to the survey of Agranov (2022) for a detailed discussion of the effects of communica-
tion in experimental bargaining games with majority and unanimity voting rules.

39These first conversations are the most interesting ones as subjects are less likely to have reached ‘unspo-
ken’ agreements.

22



Table 3: Topics of conversation across treatments

Majority Unanimity Majority vs Unanimity
48 treatment

Size of future budget 67.4% 80.7% p = 0.256
Support for delaying 57.6% 71.0% p = 0.313
Talk about equality/fairness 66.3% 77.4% p = 0.312
Threats to vote no if not equal 3.3% 6.5% p = 0.476
Threats to vote no if small budget 1.1% 3.2% p = 0.233
Risk of game termination 12.0% 41.9% p < 0.001
Talk about equality within winning coalition 79.4% n.a. n.a.
Talk about unequal split within winning coalition 25.0% n.a. n.a.

96 treatment
Size of future budget 81.2% 81.8% p = 0.936
Support for delaying 82.4% 79.6% p = 0.714
Talk about equality/fairness 57.7% 69.3% p = 0.153
Threats to vote no if not equal 11.8% 19.3% p = 0.354
Threats to vote no if small budget 11.8% 14.7% p = 0.823
Risk of game termination 25.9% 30.7% p = 0.670
Talk about equality within winning coalition 69.4% n.a. n.a.
Talk about unequal split within winning coalition 45.9% n.a. n.a.

Notes: The table reports the fraction of chats that contain discussions of topics specified in each row. We use
‘n/a’ to indicate chat categories that are not relevant to the unanimity voting rule. Observations are restricted
to the first half of the session (the first six bargaining games). The last column depicts the p-values comparing
the frequencies between the majority and the unanimity voting rules for each row.

no significant differences in the topics of discussion. Nevertheless, the interesting question

is whether conversations about specific game features relate to variation in delays across

voting rules, which is what we explore next.40

Table 4 presents the marginal effects from probit regression analyses that explore the

link between the content of conversations and delay frequencies implemented by the pro-

poser, separately for each treatment. While conversations that precede bargaining may be

endogenous to the voting rule used by the committee and the distribution of future sur-

plus, the correlation between conversations’ content and the proposer behavior is worth

exploring.

First, we find that regardless of the distribution of future surplus and the voting rule,

there is a negative correlation between the frequency of delays and conversations about

the risk of game termination. This correlation is large in magnitude and significant at the

1% level in the M48, the U48, and the U96 treatments, and not significant in the M96

treatment.
40We note also that the content of conversations changes as one moves from the 48 to 96 treatments, con-

ditional on a voting rule. (See Table 13 in Appendix F.) In particular, for the majority voting rule, increase
in potential future budget is associated with more talks about the future budget (p = 0.002) and delaying
(p = 0.049). Similarly, for the unanimity voting rule, an increase in potential future budget is associated with
talk about equality and fairness (p = 0.072) and fewer conversations about both the risk of game termination
(p = 0.026).
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Table 4: Correlation between chat topics and delay frequency

M48 U48 M96 U96

CONVERSATION TOPIC:

Risk of game termination -0.116 (0.027) -0.201 (0.071) -0.112 (0.096) -0.197 (0.077)
p < 0.001 p = 0.004 p = 0.240 p = 0.010

Equality 0.054 (0.065) -0.068 (0.058) 0.094 (0.030) -0.034 (0.048)
p = 0.400 p = 0.246 p = 0.002 p = 0.479

Equality within MWC 0.041 (0.101) -0.092 (0.042)
p = 0.688 p = 0.030

Support for delaying 0.447 (0.128) 0.685 (0.085) 0.028 (0.217) 0.481 (0.188)
p < 0.001 p < 0.001 p = 0.899 p = 0.010

Big budget 0.365 (0.120) 0.025 (0.082) 0.484 (0.128) 0.016 (0.200)
p = 0.002 p = 0.763 p < 0.001 p = 0.937

Number of observations 92 93 85 88
Number of clusters 4 4 4 4
Log psedo-likelihood -36.7 -41.7 -47.7 -34.4

Notes: The marginal effects from the probit regressions are presented separately for each treatment. The de-

pendent variable is an indicator that takes the value of one if the proposer chose to delay in the first bargaining

round and zero otherwise. Standard errors are clustered at the session level to account for interdependencies

of observations that come from the same session. Observations are restricted to the first bargaining rounds

in the first half of the session (the first six bargaining games), aiming to capture the correlation between

conversations and delays at a stage before “unspoken agreements" may be established.

Second, while there is a positive correlation between the frequency of delays and chats

that discuss equality in allocations among committee members under the majority voting

rule, such a link is not present in the treatments that use the unanimity voting rule. The

correlation observed in the Majority treatment is consistent with the intuition that chats

about equality reduce the risk associated with being excluded from the minimum winning

coalition in the Majority treatment. This can provide group members ‘reassurance’ that

they will benefit from future budgets and results in more delays. The same reassurance

effect is not present in the Unanimity treatment, since all allocations feature a three-way

split of the resources.

Third, the chats discussing the size of the future budget are positively associated with

the frequency of delays in the majority rule committees but not in the unanimity rule

committees. We hypothesize that this effect is an implication of the fear of being excluded

from a future coalition present in the majority rule committees and absent in the unanim-

ity rule committees. Indeed, such fear can be compensated in expected terms by focusing

the discussion on the size of the future surplus, which is what chats about big budget

capture.
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Finally, when committee members specifically discuss support for delaying, it posi-

tively correlates with what proposers do, i.e., they delay more often in all but the M96

treatment.

Result 3: Group members engage in meaningful conversations before making bargaining de-
cisions and discuss both issues of fairness and equality among committee members, the risk of
game termination, and the size of the future budget. Conversations about the risk of game ter-
mination are negatively correlated with proposers’ tendency to delay in all treatments, while
conversations about equality and the size of the future budget are positively correlated with pro-
posers delaying splitting the small budget in the Majority but not in the Unanimity treatments.

5 Concluding Remarks

In this paper, we experimentally explore the performance of majority and unanimity vot-

ing rules in multilateral bargaining environments with uncertainty. In our setting, the

budget to be allocated changes stochastically over time. Because the size of a future bud-

get can be large relative to the present one, small-budget delays can be efficient even under

complete information with impatient bargainers. However, whether it is an equilibrium

to wait for a larger budget to be divided depends on the voting rule: if it is worth de-

laying the decision under the majority rule, it is also true in the unanimity rule, but the

opposite direction does not hold. Furthermore, under the unanimity rule, the outcome

is always efficient. In other words, the unanimity rule achieves weakly higher efficiency

levels compared with the majority rule.

In our framework, small-budget delays are a pre-requisite for efficiency, which is why

we use this metric to compare voting rules. We find that the unanimity rule leads to bet-

ter outcomes. Indeed, small-budget delays occur more frequently under the unanimity

rule than under the majority rule, even when the theory predicts that both rules should

lead to equally efficient outcomes. The difference in the voting rules is especially large

in magnitude when reaching agreements too soon entails large efficiency losses. Under

the majority voting rule, both current proposers and coalition partners vote in favor of

small-budget proposals, perhaps out of fear of being excluded from the coalition in the

future. Indeed, under the majority rule, minimum winning coalitions do not include all

the committee members and our results highlight its failure to lead to efficient outcomes

even when the potential future budget is so large that efficiency is theoretically predicted.

On the contrary, under the unanimity voting rule, this fear is absent as no proposal can

pass without unanimous agreement, which guarantees that all members will be allocated

a positive share of the surplus. While the unanimity rule has been viewed with suspicion

because it gives “a minority a negative upon the majority" (Hamilton, The Federalist Pa-
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pers: No. 22), our results show little support for the hypothesis that under unanimity a

minority imposes costly delays on the majority.

The world outside the laboratory features many more complexities and dimensions

that may impact how well the unanimity rule would fare against the majority one. One

interesting extension of this study would be to explore how the size of the committee

may impact some of these results. In particular, increasing the amount of coordination

necessary for a vote to pass in large committees might lead to inefficiencies that are not

present in smaller committees. In addition, with a larger size committee, one could also

explore the role of other supermajority rules on equilibrium outcomes.
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A Effects of risk attitudes

Theoretical Considerations. Suppose now the payoff of a committee member from re-

ceiving a surplus of x is given by u(x) where u is a strictly increasing concave function

with u(0) = 0. As before, let vq denote the continuation payoff of a committee member

under voting rule q. Thus, to induce acceptance from another committee member, the

proposer needs to offer a surplus of u−1(δvq) to that committee member. The proposer

needs (q − 1) votes in addition to her vote for the proposal to be accepted. Thus, if the

proposer makes an offer that will be accepted when the budget is y, she receives a share

of y − (q − 1)u−1(δvq). If u(y − (q − 1)u−1(δvq)) > δvq, then the proposer is strictly better

of making a proposal that will be accepted. If u(y − (q − 1)u−1(δvq)) < δvq, then the pro-

poser is strictly better of delaying (or making an offer that will not be accepted, which is

payoff equivalent). Let αy,q(v) ∈ [0,1] denote the probability that the proposer makes an

offer that will be accepted when the budget is y and the continuation payoff is v. From the

discussion above, we have

αy,q(v) =

 1 if y > qu−1(δv)

0 if y < qu−1(δv).
(2)

When there is a delay, all players receive their continuation payoffs. When there is

an agreement, conditional on not being the proposer each player receive their discounted

continuation payoff with the same probability. In equilibrium, the continuation payoff vq
must be consistent with the strategies. Thus, we have

vq =
∑
y

py

[1
n

max
{
u(y − (q − 1)u−1(δvq)),δvq

}
+
n− 1
n

(
αy,q(vq)

q − 1
n− 1

+ (1−αy,q(vq))
)
δvq

]
(3)

where py is the probability that the budget size is y.

As before, assume there are two possible budget sizes, i.e. y ∈ {y, ȳ} with ȳ > y, py = p

and pȳ = 1 − p. It is straightforward to see that there can be no equilibrium in which

there is a delay with strictly positive probability when the budget size is large, i.e. there

cannot be any equilibrium with αȳ,q < 0. If it were the case, u(ȳ− (q−1)u−1(δvq)) ≤ δvq and

αy,q = 1. Substituting in (3), we obtain vq = 0. But since u is strictly increasing, we obtain

a contradiction to (2). In light of this observation, equation (3) can be written as

vq = p
[1
n

max
{
u(y − (q − 1)u−1(δvq)),δvq

}
+
n− 1
n

(
αy,q(vq)

q − 1
n− 1

+ (1−αy,q(vq))
)
δvq

]
+(1− p)

[1
n
u(ȳ − (q − 1)u−1(δvq)) +

q − 1
n

δvq

]
. (4)

But notice that αy,q(.) can take any value between 0 and 1 when the proposer is indiffer-
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ent between delaying and making an offer that will be accepted when the small budget is

realized. As a consequence, the operator whose fixed points characterize the equilibrium

continuation payoffs is a correspondence, not a function. Intuitively, except under una-

nimity rule, whether the proposer delays or makes an offer that will be accepted makes a

difference in the continuation payoff of the proposers since those who are excluded from

the winning coalition receive a payoff of zero in the event of an agreement but receive their

continuation payoffs when there is a delay. Define the functions fq and gq as

fq(v,α) =
1
n

max
{
u(y − (q − 1)u−1(δv)),δv

}
+
n− 1
n

(
α
q − 1
n− 1

+ (1−α)
)
δv

and

gq(v) =
1
n
u(ȳ − (q − 1)u−1(δv)) +

q − 1
n

δv,

and define the correspondence Γ as

Γ (v) =
{
v′ ∈R : ∃α ∈ [0,1] such that α = αy,q(v) and v′ = pfq(v,α) + (1− p)gq(v)

}
. (5)

It follows that vq is an equilibrium continuation payoff if and only if vq ∈ Γ (vq).41

Since u(0) = 0 and u is strictly increasing, equilibrium continuation payoffs must be

strictly positive: vq > 0 for all q. Otherwise, if vq = 0, then the right hand side of (4) is

strictly positive while the left-hand side is zero.

The existence of equilibrium can be established using Kakutani’s Fixed Point Theorem

along the lines of Theorem 3 in Eraslan and Merlo (2002) which proves existence when

the players are risk neutral. Eraslan and Merlo (2002) also show that there may be multi-

ple equilibria under majority rule but equilibrium is unique under unanimity rule when

the players are risk neutral (Merlo and Wilson (1998)). Once risk aversion is allowed,

the equilibrium payoffs need not be unique even under unanimity rule however. Merlo

and Wilson (1995) show that the equilibrium payoffs are unique, provided that the util-

ity functions satisfy a contraction property which is trivially satisfied when players are

risk-neutral or when the cake process is deterministic. Given the difficulty of verifying

this condition when players are risk-averse and the cake process is stochastic, Evdokimov

(2020) provides another sufficient condition that is easy to verify. In particular, he shows

that this sufficient condition is satisfied when the utility functions are isoelastic with a

strictly positive minimum bound.

Even when the equilibrium is not unique, our main result is robust:

Proposition 1. If vq is an equilibrium continuation payoff for the q-quota game, then there
exists an equilibrium continuation payoff vn for the unanimity game such that vn ≥ vq.

41The arguments above establish that if vq ∈ Γ (vq), then vq is a stationary subgame perfect continuation
payoff. The converse follows using the one-shot deviation principle.
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Proposition 1 shows that equilibrium continuation payoffs are weakly higher under the

unanimity rule in the sense that for any equilibrium in the q-quote game, there exists an

equilibrium in the unanimity game with a higher equilibrium continuation payoff. One

implication of this is that the unanimity rule is (weakly) more efficient. Also, note that any

player (including the proposer) votes to accept the proposal only if she receives at least

her continuation payoff. Thus, a second implication of the proposition is that, if there is

an equilibrium with delay under majority rule, there is also an equilibrium with delay

under unanimity rule but not vice versa.

Proof of Proposition 1: We use the following lemma throughout the proof.

Lemma 1. If b >max{c,a} > 0, then u(b)−u(c)
b−c < u(a)

a .

Proof. Since u is a strictly increasing concave function with u(0) = 0, we have u(b)/b <

u(a)/a. Likewise we have u(b)/b < u(c)/c. The latter inequality implies that u(b)−u(c)
b−c <

u(b
b . ‖

Since the equilibrium continuation payoffs must be strictly positive, it suffices to show

that fn(v,α) ≥ fq(v,α) for any v > 0 and α ∈ [0,1] with α = αy,q(v) and gn(v) ≥ gq(v) for any

v > 0. Note that fn(v,α) ≥ fq(v,α) if and only if

α(n− q)δv ≥max
{
u(y − (q − 1)u−1(δv)),δv

}
−max

{
u(y − (n− 1)u−1(δv)),δv

}
. (6)

There are three cases to consider:

Case 1: u(y− (n−1)u−1(δv)) ≥ δv. Then, since v > 0 and u is strictly increasing, we have

u(y − (q − 1)u−1(δv)) > δv, α = 1 and (6) reduces to

(n− q)δv ≥ u(y − (q − 1)u−1(δv))−u(y − (n− 1)u−1(δv)).

Let a = u−1(δv), b = y − (q−1)a, and c = y − (n−1)a. Then the above inequality is equivalent

to u(a)/a ≥ [u(b)−u(c)]/(b − c). It is satisfied by Lemma 1.

Case 2: u(y − (q − 1)u−1(δv)) < δv. Then α = 0 and (6) is trivially satisfied.

Case 3: u(y − (n− 1)u−1(δv)) < δv ≤ u(y − (q − 1)u−1(δv)). Then (6) reduces to

α(n− q)δv ≥ u(y − (q − 1)u−1(δv))− δv.

If the right hand side is zero, then the inequality is trivially satisfied. Otherwise, α must

be equal to 1 and the inequality is satisfied since

u(y − (q − 1)u−1(δv))− δv < u(y − (q − 1)u−1(δv))−u(y − (n− 1)u−1(δv)) ≤ (n− q)δv
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where the first inequality is satisfied by the conditions defining Case 3, and the second

inequality is satisfied by Lemma 1 by choosing a, b and c as in Case 1.

It remains to show that gn(v) ≥ gq(v) for any v > 0. The proof of this is identical to the

proof of Case 1 above. ‖

Risk Attitudes of Experimental Subjects. As we describe in Section 3, we elicited the

risk attitudes of our participants using the design of Gneezy and Potters (1997) with two

parametrizations (see Appendix B for the description of the tasks). Table 5 presents sum-

mary statistics for both investment tasks across treatments and shows that are no statistical

differences across treatments in either parameterization. We, therefore, reject that treat-

ment differences are due to differences in risk as measured in this task.42

Table 5: Aggregate statistics regarding Investment Tasks across treatments.

Investment Task 1 Investment Task 2
Treatment Mean Median Mean Median

M24 121.5 100 107.5 100
(p = 0.544) (p = 1.00) (p = 0.98) (p = 1.00)

U24 111.7 100 107.8 100

M48 125.4 100 100.8 100
(p = 0.364) (p = 1.00) (p = 0.67) (p = 1.00)

U48 113.5 100 108.1 100

M96 117.4 100 99.0 100
(p = 0.593) (p = 1.00) (p = 0.25) (p = 1.00)

U96 125.6 100 118.4 100

Notes: In each investment task, subjects were endowed with 200 tokens (worth $2) and chose how many of

them to invest in the risky project. In Investment Task 1, the risky project pays 2.5 times the invested amount

with a probability of 50%, while in Investment Task 2, the risky project pays 3 times the invested amount with

a probability of 40%. The tokens not invested had a one-to-one return.

As Table 5 shows, the median investment is 100 in both investment tasks. Given this,

we can back out the parameters of CRRA utility for which this median investment is the

optimal one. Using the average parameter across the two investment tasks, we obtain that

42The p-values are the result of OLS and quantile regressions with clustering at the session level.
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an average participant in our experiments has a CRRA utility function

u(x) =
x1−γ

1−γ
with γ = 0.25

Assuming all group members have this utility function, we can compute the efficiency

outcome and pure strategy equilibria in all our treatments. The efficient outcome is to

delay small budgets both in the 48 and the 96 treatments. In the M96 and U96 treatments,

the unique equilibrium is the one in which group members always delay distributing the

small budget in anticipation of the large one. In the M48 treatment, the unique equilib-

rium prescribes group members to distribute the small budget immediately. In the U48

treatment, there are two equilibria: one in which small budgets are delayed and another

in which small budgets pass right away. Therefore, while the introduction of risk attitudes

leads to multiple equilibria in the U48 treatment, the institution comparison remains the

same as in the risk-neutral case: conditional on the size of the large budget, the commit-

tees that use the unanimity rule achieve weakly more efficient outcomes than those that

use the majority rule.

B Instructions for U96 treatment

This is an experiment in the economics of decision making. The instructions are simple,

and if you follow them carefully and make good decisions you may earn a CONSIDER-

ABLE AMOUNT OF MONEY which will be PAID TO YOU IN CASH at the end of the

experiment. In addition to what you will earn in the experiment, you will get a $12 par-

ticipation fee if you complete the experiment.

In this experiment you will play 12 Matches. At the start of each Match you will be

randomly divided into groups of 3 members each. In any Match you will not know the

identity of the subjects you are matched with and your group-members will not know

your identity. At the start of each Match, each member of the group will be assigned an ID

number (from 1 to 3), which is displayed on the top of the screen. Since ID numbers will

be randomly assigned prior to the start of each Match, all members are likely to have their

ID numbers vary between Matches. In addition, since you will be randomly re-matched to

form new groups of 3 at the start of each Match, it is impossible to identify subjects using

their ID numbers.

Each Match consists of one or more Rounds. Your ID number will stay the same during

all the Rounds of a Match. However, once the Match is over, you will be randomly re-

matched to form new groups of 3 members each and you will be assigned a (potentially)

NEW ID. Please make sure you know your ID number when making your decisions.

In each Match, each group will decide how to split a sum of money (the “budget”).
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One of the 3 members in your group will be randomly chosen to be the proposer. Each

member has the same chance of being selected to be the proposer. The proposer can take

one of two actions. The proposer can either submit an “allocation proposal” of how to split

the budget among the 3 members, or the proposer can hit a “delay” button. In the first

Round of a Match, the budget available to be split will be 24 dollars. We will describe the

budget available in other Rounds as well as what happens if the proposer chooses to hit

the “delay” button shortly.

Suppose the proposer chooses to make an allocation proposal. After the allocation pro-

posal is submitted, it will be posted on your computer screens with the allocation to you

and the other members clearly indicated. You will then have to decide whether to accept or

reject the allocation proposal. Allocation proposals will be voted up or down (accepted or

rejected) by unanimity rule. That is, if all three members approve the allocation proposal,

the match ends and the earnings from this match are given by the approved allocation

proposal. If at least one of three members rejects the allocation proposal, it is voted down.

If the allocation proposal is voted down (that is at least one member of your group

votes against it), then one of two things can happen:

• With 20% chance the Match ends and all members of your group will earn 0 dollars

for this Match.

• With 80% chance you move on to the next Round of this Match. In this case, one

of the 3 members in your group will be randomly chosen to be the proposer for this

round. After the proposer has been chosen, he will have the choice between hitting

the “delay” button, or making an allocation proposal on how to split the budget.

However, budget will either be 24 dollars or 96 dollars, with 50/50 chance of each.

In other words, there is 50% chance that the proposer in Round 2 will be dividing 24

dollars between group members and 50% chance that the proposer in Round 2 will

be dividing 96 dollars. The proposer in Round 2 and all group members will know

the size of the budget available for division before making any decisions. If the

proposer submits an allocation proposal and it is voted down, then again with 20%

chance the Match ends and all members of your group will earn 0 dollars for this

Match, and with 80% chance you will move on to the next Round of this Match. If

the group moves on to the next Round, then, again, one of the 3 group-members will

be randomly chosen to either hit the “delay” button, or make an allocation proposal

on how to split budget among the 3 members with each member equally likely to be

chosen as a proposer. The budget size will either be 24 dollars or 96 dollars, with

50/50 chance of each. In fact, for all Rounds after the first Round, the budget will

either be 24 dollars or 96 dollars, with 50/50 chance of each. This process repeats

itself until a Match ends, either because of the 20% chance it ends between Rounds,
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or because an allocation proposal has passed.

Recall that instead of submitting an allocation proposal, a proposer can choose to “de-

lay.” If a proposer chooses “delay”, then the group goes through the same stages as if a

proposal is rejected. That is, if a proposer chooses “delay” then with 20% chance the

Match ends and all members receive 0 dollars for this Match. With 80% chance the group

moves on to the next Round within the Match, one member of your group is randomly

chosen to be the next proposer and the amount of money to split is either 24 dollars or 96

dollars with 50/50 chance of each etc.

To summarize, in any given round, if an allocation proposal is rejected, or if the pro-

poser chooses “delay,” then with 20% chance the Match ends and members of the group

earn 0 dollars for this Match. With 80% chance a new Round starts, one member of your

group is randomly chosen to be the proposer and the budget to be split is either 24 or 96

dollars, each with 50/50 chance. This continues until a Match ends, either because of the

20% chance it ends between rounds, or because an allocation proposal passes.

Communication: In each Round, after one voter is selected to propose a split but before

he/she submits his/her allocation proposal, members of a group will have the opportunity

to communicate with each other using chat boxes. The communication is structured as

follows. On the top of the screen, each member of the group will be told her ID number.

You will also know the ID number of the member who is currently selected to make a

proposal. Below you will see three boxes, in which you will see all messages sent to either

all members of your group or to you personally. You will not see the chat messages that

are sent privately to other members. If you would like to send the message that will be

delivered to the entire group, please type your message underneath the first chat box and

hit SEND. If you would like to send a private member of your group, please type your

message underneath the chat box that indicates the chat with that member and hit SEND.

There is a 20 second period of time at the start of each Round during which the pro-

poser cannot submit his/her allocation or choose delay. During this time, any person in

the group can choose to use the chat function on his/her screen. The chat option will be

available as soon as the Round starts, and for at least 20 seconds. The chat option will be-

come unavailable when the proposer either submits his allocation proposal or hits delay.

You are not to communicate in any other way with any other subject while the experiment

is in progress. This is important to the validity of the study.

Remember that in each Match subjects are randomly matched into groups and ID num-

bers of the group-members are randomly assigned. Thus, while your ID number stays the

same during all the Rounds in a Match, your ID number is likely to vary from Match to

Match, and therefore it is impossible to identify your group-members using your ID num-

ber.
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At the conclusion of the experiment we will randomly select one of the 12 Matches

to count for payment. The $12 participation fee will be added to your earnings in that

randomly selected Match.

Review. Let’s summarize the main points:

1. The experiment will consist of 12 Matches. There may be several Rounds in each

Match.

2. Prior to each Match, you will be randomly divided into groups of 3 members each.

Each subject in a group will be assigned an ID number.

3. At the start of each Match, in Round 1, one subject in your group will be randomly

selected to be a proposer in this Round. The proposer can choose either to submit

an allocation proposal or to delay. The size of the budget in Round 1 is 24 dollars.

Before the proposer chooses his/her action, all members of the group can use the

chat box to communicate with each other. You may send public messages that will

be delivered to all members of your group as well private messages that will be

delivered to specific members of your group.

4. Proposals to each member must be greater than or equal to 0 dollars.

5. If all 3 members accept the allocation proposal, the Match ends.

6. If one or more members reject the allocation proposal, or if the proposer chose to hit

the “delay” button, then one of two things can happen:

• With 20% chance the Match ends and all members of the group earn 0 dollars.

• With 80% chance the Match continues. In this case, one member of the group

will be randomly selected to be the proposer in Round 2. The budget available

for division in Round 2 will be either 24 or 96 dollars, each with 50/50 chance.

The proposer can choose either to delay or to submit an allocation proposal,

etc. . .

7. The process in step 6 repeats itself until a Match is over, either because of the 20%

rule, or because an allocation proposal has passed. At the end of the experiment, the

computer will randomly select one of the 12 Matches you played, and your earnings

in this selected match will be paid to you in cash together with the participation fee

of $12.

Are there any questions?
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C Screenshots for U96 treatment

Before starting the experiment, we will show you a few screenshots so that you can fa-

miliarize yourself with the interface. After that, we will start the experiment, in which

you will play 12 Matches. Please note that the numbers and decisions from the screen-

shots below are just examples and are not meant to indicate what you should do in this

experiment.

The screenshot in Figure 4 is a typical screenshot that proposers see.

Figure 4: Screenshot of the Proposer
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Please take a look at the bottom part of the screen depicted in Figure 5:

Figure 5: Bottom Part of Screenshot of the Proposer

Notice that there are three boxes labeled with the ID numbers of the members. This is

where the proposer writes his/her allocation, corresponding to the amounts to members

1, 2 and 3, respectively. The proposer is the only member of the group who can choose to

submit an allocation or “delay”. When you are done choosing an allocation, hit submit. If

you choose to “delay”, hit Delay.

Let’s look at the rest of the screen. On the top left side you will be able to see the history

of the current Match depicted in Figure 6:

Figure 6: History of Current Match

Take a moment to look at that. It will show you the budget size for each Round of the

Match, the ID number of the proposer for that Round, and once the proposal has been

submitted votes have taken place you will see those too. If the proposer chose to “delay”

then you will see “DELAY” in the space under “proposal.”

Below the Match-history box, you will see the chat boxes depicted in Figure 7. The

left chat box shows the group conversations, while the middle and the right box show the

private conversations with the other two members. Below each chat box are the boxes you

will use to send messages if you choose to do so.
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Figure 7: Chat Box

Below in Figure 8 is a screenshot of the non-proposers. It is identical to the proposer

screens except for the right hand side since only proposer can choose to submit an alloca-

tion or “delay.”
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Figure 8: Screenshot of the Non-Proposer
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Below is another example of a within Match history (see Figure 9). In this particular

example, the proposer in Round 1 was member 1 and he/she chose to Delay. The match

continued to the next round. In Round 2, the proposer was member 2, the budget was 96

dollars and the proposer chose to submit an allocation according to which member 1 gets

2 dollars, she (member 2) gets 50 dollars and member 3 gets 44 dollars. The proposal was

rejected since it didn’t not receive all 3 yes votes. The match continued to the next round.

In Round 3, member 2 was again randomly chosen to be the proposer and she submitted

another allocation according to which member 1 gets 90 dollars, member 2 (herself) gets

6 dollars and member 3 gets 0 dollars. Notice that in this table you can always see the size

of the budget as well as who was proposer in every round, what action they took (propose

an allocation or “delay”) and the results of the votes.

Figure 9: Match History

If a proposer submits an allocation, all members of the group see the screen like the

one in Figure 10. The proposal is clearly indicated, and your payoff if the proposal is

approved is highlighted in red. You can then vote yes or no to the proposal. Please note

that the numbers here are just examples and are not meant to indicate what you should do

in this experiment.

The proposer for this round was member 1. 

The proposer chose [2 22 O]. which is displayed below. 

Your payoff is shown in red 

Member1 

Allocation Proposal 2 

Member 2 Member 3 

22 0 

Please click the button below corresponding to your vote on this proposal and click Next: 

Yese No 

-

Figure 10: Voting Screen

After members vote all members see the screen like the one in Figure 11:

41



Figure 11: Summary of Votes

Your earnings are always highlighted in red. If the match randomly ends because of

the 20% rule you, you will see the messages shown in Figure 12 on the right hand side of

your screen.

Figure 12: Termination Message

Are there any questions?

D Investment Tasks

Investment Task 1. You are endowed with 200 tokens (or $2) that you can choose to keep

or invest in a risky project. Tokens that are not invested in the risky project are yours to

keep.

The risky project has 50% chance of success:

• If the project is successful, you will receive 2.5 times the amount you chose to invest.

• If the project is unsuccessful, you will lose the amount invested.

Please choose how many tokens you want to invest in the risky project. Note that you

can pick any number between 0 and 200, including 0 or 200.

Investment Task 2. You are endowed with 200 tokens (or $2) that you can choose to keep

or invest in a risky project. Tokens that are not invested in the risky project are yours to

keep.

The risky project has 40% chance of success:
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• If the project is successful, you will receive 3 times the amount you chose to invest.

• If the project is unsuccessful, you will lose the amount invested.

Please choose how many tokens you want to invest in the risky project. Note that you

can pick any number between 0 and 200, including 0 or 200.

In the experiment, one of the two investment tasks was randomly chosen to count for

payment.

Table 6 presents summary statistics for decisions in Investment Tasks across treat-

ments. There are no statistical differences across treatments in this game. We therefore

reject that treatment differences are due to differences towards risk as measured in this

game.

Table 6: Behavior in investment tasks across treatments.

Investment Task 1 Investment Task 2
Treatments mean median mean (st dev) median
M24 121.5 100 107.5 100

(p = 0.544) (p = 1.00) (p = 0.983) (p = 1.000)
U24 111.7 100 107.8 100

M48 125.4 100 100.8 100
(p = 0.364) (p = 1.00) (p = 0.671) (p = 1.000)

U48 113.5 100 108.1 100

M96 117.4 100 99.0 100
(p = 0.593) (p = 1.00) (p = 0.252) (p = 1.000)

U96 125.6 100 118.4 100

Notes: The p-values are the result of OLS and quantile regressions with clustering at the session level.

E Coding the free-form communication

For 48 and 96 treatments, the coders were asked to code conversations using the categories

listed below. The last three categories are for Majority treatments only:

1. Is there any discussion relevant to the experiment (budget, how to split it, whether to

delay or not, how often the game is terminated, what is fair, anything that happened

in other rounds, clarifications on the experiment etc. . . )? Yes/No

2. Is there any talk about delay/big pie/big budget, anything about the fact that the

budget can be “big”? Yes/No

3. Is there any talk risk of game being terminated? Yes/No
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4. Is there any talk about equality and fairness among all group members? Yes/No

5. Are there threats to vote no if not equal division? Yes/No

6. Are there threats to vote no if small budget? Yes/No

7. Other threats? Yes/No

8. Is there any indication of support to wait for a big pie or delay? Yes/No

9. Is there a discussion of a minimum winning coalition, i.e., excluding one member

and colluding among two members to divide the budget just among them? Yes/No

10. Is there a conversation about splitting budget equally between you and me? Yes/No

11. Is there a conversation about dividing resources unequally within minimum winning

coalition? Yes/No

F Additional Analysis

Delays in first bargaining rounds only. Table 7 mirrors Table 1 in the main text, but

focused only on the first stage of each game where the budget is small by design.

Table 7: Frequency of delays

Majority Unanimity Maj vs Un

48 treatment
Small budget 52% (n=192) 83% (n=192) p = 0.001

Prediction 0% 100%

96 treatment
Small budget 76% (n=192) 96% (n=192) p < 0.001

Prediction 100% 100%

Notes: This table shows the total frequency of delays for small budgets at the group level in the first bargaining

stage. This frequency encompasses cases in which the proposer chose to delay and those in which the proposal

was rejected by the committee. The last column shows the p-values from regression analyses comparing across

voting treatments for each row.

Total committee earnings. Table 8 show the predicted earnings and the average num-

ber of dollars that were distributed among committee members in each treatment with

standard errors in parentheses.
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Table 8: Predicted and observed total earnings of a committee, by treatment

24 treatment 48 treatment 96 treatment 24 vs 48 48 vs 96
Predictions

Majority 24 24 64
Unanimity 24 32 64

Experiment
Majority 23.63 (0.24) 26.50 (0.82) 47.13 (0.69) p = 0.008 p <0.001
Unanimity 22.75 (0.52) 26.13 (1.43) 56.25 (1.25) p = 0.048 p <0.001

Majority vs Unanimity p = 0.143 p = 0.813 p < 0.001

Notes: We present the averages of total number of dollars appropriated by committees in expectation as well

as in the experiment in each treatment. Robust standard errors are calculated based on regressions with

clustering at the session level and presented in the parenthesis. The last line reports statistical tests comparing

the two voting treatments obtained using regression analysis. The last two columns report statistical tests

comparing the average surpluses in different treatment with the same voting rule.

Table 8 shows that higher expected future surplus translates into higher average earn-

ings of a committee. Indeed, for each voting rule separately, committees appropriate sig-

nificantly higher surpluses in the 48 treatment compared with the 24 treatment and in the

96 treatment compared with the 48 treatment (see the last two columns with p-values).

Moreover, comparing the average surplus across voting rule for a fixed size of the fu-

ture expected surplus, we note that two opposing forces determine this ranking. Under the

majority rule, committees pass small budgets more often and large budgets less often than

committees under unanimity rule, which gives unanimity rule committees an advantage

compared with majority rule committees. On the other hand, as we described in Footnote

31, subjects under the unanimity rule were “unlucky" (statistically speaking) and experi-

enced higher termination rates (controlling for delaying) compared with the majority rule.

Empirically, in the M48 and U48 treatments, these two forces happen to exactly offset each

other, which is why we observe similar average earnings in the two voting rules, despite the

fact that subjects in the Unanimity rule choosing to delay small budgets significantly more

often. In the M96 and U96 treatments on the other hand, where the gains from waiting to

reach a round with a higher budget are the highest, the first force dominates the second,

and the unanimity rule outperforms the majority rule.

Delays at the individual level. Figure 13 depicts the histograms of individual propen-

sity to delay for each participant when he or she was selected to be the proposer condi-

tional on the budget being small. These are average frequencies of delays per person across

all twelve games played in a session.

The Figure 13 reveals that there is noticeable heterogeneity in individual propensity

to delay in each treatment. However, despite this heterogeneity, the comparison across
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Figure 13: Individual propensity to delay, by treatment
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Notes: For each participant, we compute the frequency with which she delayed splitting the small budget

when she was selected to be a proposer over the course of the entire experiment.

voting rules is similar to those at the aggregate level. Indeed, proposers are more likely to

delay splitting the small budget in the Unanimity treatment as compared with the Majority

treatment. This effect is statistically significant for the 96 treatment (p = 0.018) but not for

the 48 treatment (p = 0.824).

Learning. Table 9 below compares the fraction of small-budget proposals that are passed

in each treatment, separating the data between the first and second halves of the experi-

ment. In both halves of the experiment, small budgets are much more likely to pass in

the Majority treatments than in the Unanimity treatments that feature stochastic future

budgets.

Table 9: Fraction of small-budget proposals passed in the two halves of the experiment.

Treatment First Half Second Half

M48 93.7% 93.2%
(p < 0.001) (p = 0.002)

U48 40.9% 43.2%

M96 87.8% 81.1%
(p < 0.001) (p = 0.026)

U96 34.4% 28.0%

Notes: For each budget distribution we compare the outcomes in the Majority and Unanimity treatments using

regression analysis, in which we regress the variable of interest on the constant and an indicator for one of

the treatments, while clustering standard errors by session. We report the p-value associated with estimated

coefficient on the dummy for one of the treatments.

In Table 10 we replicate material from the main text, but breaking it down by first

and second halves of the game as well as by bargaining round. We focus on the rejection
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Table 10: Rejection rates in the first and second half of the experiment by bargaining
round

Small budgets Large budgets
overall 1st round 2nd round >3rd round overall

first half

M48 51.2% 50.0% 52.9% 62.5% 0.0%
p < 0.001 p = 0.003 p = 0.005 p = 0.637 .

U48 81.3% 83.3% 86.1% 50.0% 9.8%

M96 67.4% 65.6% 70.8% 75.0% 3.2%
p < 0.001 p < 0.001 p = 0.061 p = 0.004 p = 0.968

U96 93.5% 93.8% 92.5% 94.1% 3.4%

second half

M48 56.4% 54.2% 68.2% 50.0% 3.9%
p = 0.025 p = 0.007 p = 0.587 p = 0.851 p = 0.465

U48 77.9% 82.3% 75.0% 53.9% 7.3%

M96 78.3% 85.4% 61.3% 63.4% 4.2%
p < 0.001 p = 0.002 p < 0.001 p = 0.178 p = 0.477

U96 96.0% 99.0% 97.8% 84.4% 1.9%

rates of small budgets in line with our analysis in the main text. We note no fundamen-

tal differences: small budgets are more likely to be rejected in the Unanimity treatments

compared with the Majority ones (this is also generally true if we break it down by bar-

gaining rounds). There is no cross-treatment differences in how large budgets are treated.

This aligns with the conclusions obtained when grouping the data from all games and all

bargaining rounds together as we did in the main text.

Proposed Allocations for Small Budgets. Table 11 shows which types of proposals are

made when the budget to be split is of size 24 in each treatment.

In all of the Majority treatments, the modal proposal is an equal split among all three

members of the group (this fraction is between 34.9% and 37.7%), though roughly half

of the proposals are of size 2, and the other half of size 3. In the Unanimity treatments,

a substantial majority of proposals provide an equal split of resources among all three

members of the group. Cross-treatment differences in terms of proposal types have strong

implications on inequality within groups.

Table 12 shows how frequently small budget-proposals are accepted in each treatment,

by the type of proposal. In the Majority treatments, regardless of the type of small-budget

proposal, a large majority pass (the fraction ranges from 66.7% to 100%). Strikingly, these

fractions remain high even when delaying is an equilibrium, as in the M96 treatment. In

the Unanimity treatment, however, the fraction of small-budget proposals that pass range

from 0% to 96.6%, and, in line with the theoretical predictions, far fewer of these proposals
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Table 11: Distribution of proposal types in submitted allocations (small-budget
proposals).

Treatment
Coalition Size 2 Coalition Size 3

Equal Splits Unequal Split Equal Split Unequal Split

M24 20.0% 25.4% 35.6% 19.0%

M48 35.3% 23.0% 37.7% 4.1%

M96 20.9% 27.9% 34.9% 16.3%

U24 2.4% 1.6% 70.73% 25.2%

U48 0% 0.7% 68.6% 30.7%

U96 0% 1.8% 89.5% 8.8%

Notes: Equal split coalitions of size 2 are proposals in which two members receive the exact same amount while the third
receives nothing. Equal split coalitions of size 3 are proposals in which all three members receive the exact same amount.

pass when the cost of early agreement is high, as in the U48 and U96 treatments.

Table 12: Fraction of accepted proposals dividing the small budget.

Treatment
Coalition Size 2 Coalition Size 3

Equal Splits Unequal Splits Equal Splits Unequal Splits

M24 97.6% 82.7% 98.6% 87.2%

M48 100% 78.6% 95.7% 100%

M96 88.9% 66.7% 96.7% 85.7%

U24 na na 96.6% 22.6%

U48 na 0% 57.3% 9.3%

U96 na na 35.3% 0%

Notes: Equal split coalitions of size 2 are proposals in which two members receive the exact same amount while the third
receives nothing. Equal split coalitions of size 3 are proposals in which all three members receive the exact same amount.
We report data for which we have at least 10 observations.

Conversation Topics Across Treatments Within a Voting Rule. Table 13 below shows

the statistical tests comparing frequencies of conversation topics across budget size within

the same voting rule.
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Table 13: Topics of conversation across treatments

M48 vs M96 U48 vs U96
Size of Future Budget p = 0.002 p = 0.662
Support for Delaying p = 0.049 p = 0.286
Talk about equality/fairness p = 0.842 p = 0.072
Threats to vote no if not equal p = 0.122 p = 0.548
Threats to vote no if small budget n.a. p = 0.101
Risk of Game Termination p = 0.148 p = 0.026
Talk about equality within MWC p = 0.209 n.a.
Talk about unequal split within MWC p = 0.021 n.a.

Notes: We report the p-values comparing the frequencies of conversation topics across treatments with

different potential budget sizes conditional on the voting rule.
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