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Proposition 2 in Chandrasekhar et al. (2020) characterizes when imitation is optimal in
a discrete-time setup where all agents are myopic Bayesian and this is common knowledge.
In this note, we provide a correction to this result, where the condition for imitation to be
optimal is stronger than in the original result.
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1. INTRODUCTION

In the context of social networks, imitation is the act of following a decision made by one
of the agent’s neighbors. Proposition 2 in Chandrasekhar et al. (2020) characterizes when im-
itation is optimal in a discrete-time setup where all agents are myopic Bayesian and this is
common knowledge. In this note, we provide a correction to this result, where the condition for
imitation to be optimal is stronger than in the original result.

This correction bears no additional implications on the original paper. The other propositions
and theorems, the reduced form results, the simulations, and the estimations are all un-effected
by this correction. The important message of the original paper is as clear as it was before: we
need to treat the population of agents that act on the network as a mixed population of Bayesian
and naive agents, and to account for the uncertainty that emerges from the unobservability of
these types.

Notwithstanding, showing that imitation is optimal less frequently than suggested in the orig-
inal paper is consequential. Theoretically, it reduces the set of networks in which the optimal
dynamics is such that a few dominant agents determine the beliefs of all network members.
Experimentally, it lowers the baseline rates of imitation. We first provide the setup, then we
provide two counter-examples to Proposition 2 in Chandrasekhar et al. (2020). We conclude
with the correct version of the imitation proposition and its proof.

2. SETUP

Agents are located on an undirected, unweighted network G =< V,E > where V =
{1,2, . . . , n} is the set of agents and E is the set of pairs, such that {i, j} ∈E (henceforth de-
noted by ij ∈E) implies that agent i and agent j are directly connected inG.Ni = {j : ij ∈E}
denotes the set of agent i’s direct neighbors in G (N?

i =Ni ∪ {i}).
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Agents attempt to learn the state of nature, θ, which takes two values θ ∈ {0,1}. A-priori,
Pr[θ = 0] = 0.5. The time is discrete, t ∈ {1,2, . . .}. Before the first round, each agent receives
a private signal about the state. The signal of agent i is denoted by si ∈ {0,1}. Given the state,
signals are iid and have precision p:

Pr[si = 0|θ = 0] = Pr[si = 1|θ = 1] = p ∈
(
1

2
,1

)
In each round t, each agent chooses one of two possible actions, 0 or 1. The action of agent

i in period t is denoted by ai,t ∈ {0,1}. Agents have perfect recall, that is, in each round
t ∈ {2, . . .}, before making a decision, each agent observes her own past choices and those
made by her direct neighbors in all previous rounds.

Agents are assumed to be Bayesian and myopic utility maximizers and this is common
knowledge. That is, in each round, each agent states her best guess regarding the majority
of the private signals based on her own signal and the actions taken by her direct neighbors in
all previous rounds.

3. PROPOSITION 2 IN CHANDRASEKHAR ET AL. (2020)

Definition. Agent j is strictly better informed than agent i if N?
i (N?

j , denoted by j B i.

Note that j B i has three useful properties. First, since i 6= j, agents i and j are direct neigh-
bors. Second, the inclusion is strict, that is, there is at least one agent k such that k ∈Nj and
k /∈Ni. Third, if agent j has the same information as agent i and more, then agent j has a finer
information structure than agent i. By Green and Stokey (1978) it means that agent j is more
informed than agent i and therefore, by Blackwell (1953), she has higher expected payoffs.

Assuming a common knowledge that all agents are myopic Bayesian utility maximizers,
Proposition 2 in Chandrasekhar et al. (2020) states that agent i imitates agent j if agent j is
strictly better informed than agent i. That is, if j B i then ∀t≥ 3 : ai,t = aj,t−1.

This condition is too weak to guarantee that imitation is an optimal course of behavior for
a myopic Bayesian utility maximizing agent. The reason is two-fold. First, the set of agents
that are better informed than agent i may include more than one agent. In this case, it is not
clear who should agent i imitate. Second, imitation means that agent i uses information in
a lag of one period compared to agent j. Hence if agent i has an alternative way to acquire
the information simultaneously with agent j, she may find it optimal to use this information
immediately rather than wait a period.

4. TWO COUNTEREXAMPLES

We provide two counterexamples. The first counterexample demonstrates a case where imi-
tation by the original Proposition 2 in Chandrasekhar et al. (2020) is not optimal. The second
counterexample shows that even if the player has multiple other players to potentially imitate,
by the original Proposition 2 in Chandrasekhar et al. (2020), it might be optimal for her to
imitate none of them.
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FIGURE 1.—First counterexample

4.1. The Case of One Influential Player

Consider the network depicted in Figure 1. For the sake of this example, assume that p= 0.7
and the signals’ received by the agents are s1 = s2 = s3 = s4 = 0, while s5 = s6 = s7 = s8 =
s9 = 1.

In the first period, every i ∈ {1,2,3,4} chooses ai,1 = 0 while every i ∈ {5,6,7,8,9}
chooses ai,1 = 1. In the second period, the agents aggregate their local information and
keep their first round choices, that is, every i ∈ {1,2,3,4} chooses ai,2 = 0 while every
i ∈ {5,6,7,8,9} chooses ai,2 = 1.

After observing the guesses of period 2, agent 1 knows that s1 = s2 = s3 = 0, s5 = 1, she
cannot deduce the signal that agent 4 received but can be sure that at least 3 of agents 6, 7, 8
and 9 got the signal 1 (since otherwise agent 5 would have guessed a5,2 = 0). Therefore, before
period 3, there are eight possible cases for agent 1 (unconditional probability in parentheses):

1. The state is 0, agent 4 got 0 and one of agents 6−9 received 0 (0.5×4× (0.7)5× (0.3)4).
2. The state is 0, agent 4 got 1 and one of agents 6−9 received 0 (0.5×4× (0.7)4× (0.3)5).
3. The state is 0, agent 4 got 0 and all agents 6− 9 received 1 (0.5× (0.7)4 × (0.3)5).
4. The state is 0, agent 4 got 1 and all agents 6− 9 received 1 (0.5× (0.7)3 × (0.3)6).
5. The state is 1, agent 4 got 0 and one of agents 6−9 received 0 (0.5×4× (0.7)4× (0.3)5).
6. The state is 1, agent 4 got 1 and one of agents 6−9 received 0 (0.5×4× (0.7)5× (0.3)4).
7. The state is 1, agent 4 got 0 and all agents 6− 9 received 1 (0.5× (0.7)5 × (0.3)4).
8. The state is 1, agent 4 got 1 and all agents 6− 9 received 1 (0.5× (0.7)6 × (0.3)3).

Conditional on these eight possible cases, the probability of the state being 1 is 133
226

> 1
2

, so
agent 1 should guess a1,3 = 1.1 But, if agent 1 would have behaved in accordance with the

1It can be shown that in period 3, agents 2, 3 and 4 choose 0 while the others choose 1. This reveals to agents 1
and 5 that agent 4 got the 0 signal (s4 = 0). Agent 5 also understands that agent 2 got 0. As a result, in period 4,
agent 1 switches back to 0. However, since agent 5 continues to choose 1 also in period 4, although she understands
that s1 = s2 = s3 = s4 = 0, agents 1 and 3 realize that agents 6− 9 all got the signal 1. Therefore agents 1 and 3
switch to 1 in period 5 and by round 6 there is a consensus on the state being 1.
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FIGURE 2.—Second Counterexample

original Proposition 2 in Chandrasekhar et al. (2020) she should have imitated agent 3. There-
fore, she would have been non-optimal in period 3 (should guess 1 but guesses a1,3 = a3,2 = 0).

4.2. The Case of Two Influential Players

Consider the network depicted in Figure 2. For the sake of the example, assume that p= 0.7
and the signals’ received by the agents are s1 = s2 = s3 = s4 = 0, while s5 = s6 = s7 = 1.

In the first period, every i ∈ {1,2,3,4} chooses ai,1 = 0 while every i ∈ {5,6,7} chooses
ai,1 = 1. In the second period, the agents aggregate their local information and keep their first
round choices, that is, every i ∈ {1,2,3,4} chooses ai,2 = 0 while every i ∈ {5,6,7} chooses
ai,2 = 1. After observing the guesses of period 2, agents 3 and 4 deduce that both agents 6 and
7 received the signal 1 since otherwise agent 5 would have guessed a5,2 = 0. In addition, agents
3 and 5 deduce that at least one of agents 1 and 2 received the signal 0 since otherwise agent 4
would have guessed a4,2 = 1.

Therefore, in period 3, since nothing has changed for them, agents 1 and 2 choose 0 (a1,3 =
a2,3 = 0) while agents 6 and 7 choose 1 (a6,3 = a7,3 = 1). Agent 4 already knows the exact
signal distribution and therefore chooses 0 (a4,3 = 0). Agents 3 and 5 know that agents 3 and
4 received 0 signals and agents 5, 6 and 7 received 1 signals. Therefore, there are six possible
cases (unconditional probability in parentheses):

1. The state is 0 and both agents 1 and 2 received 0 (0.5× (0.7)4 × (0.3)3).
2. The state is 0, agent 1 received 1 and agent 2 received 0 (0.5× (0.7)3 × (0.3)4).
3. The state is 0, agent 1 received 0 and agent 2 received 1 (0.5× (0.7)3 × (0.3)4).
4. The state is 1 and both agents 1 and 2 received 0 (0.5× (0.7)3 × (0.3)4).
5. The state is 1, agent 1 received 1 and agent 2 received 0 (0.5× (0.7)4 × (0.3)3).
6. The state is 1, agent 1 received 0 and agent 2 received 1 (0.5× (0.7)4 × (0.3)3).

Conditional on these six possible cases, the probability of the state being 1 is 17
30
> 1

2
, so agents

3 and 5 guess 1 (a3,3 = a5,3 = 1).2 In period 4, agents 3 and 5 understand that agent 4 already
knew the signal distribution in the previous period and therefore imitate her, a3,4 = a5,4 = 0.
Learning is complete in period 5 when agents 6 and 7 imitate agent 5 (a6,5 = a7,5 = 0).

If agents behaved in accordance with the original Proposition 2 in Chandrasekhar et al.
(2020), agent 3 should have imitated either agent 5 or agent 4. In both cases, agent 3 would

2For agents 3 and 5, the conditional probability of agents 1 and 2 both receiving 0 is only 1
3

.
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FIGURE 3.—Illustration of C(i)

be non-optimal in at least one of the periods: If agent 3 had imitated agent 5, then she would
have been non-optimal in period 4 (should guess 0 but guesses a3,4 = a5,3 = 1); If agent 3 had
imitated agent 4, then she would have been non-optimal in period 3 (should guess 1 but guesses
a3,3 = a4,2 = 0).

5. CORRECTED PROPOSITION ABOUT IMITATION

Definition. Denote the subset of neighbors of agent i that are strictly better informed than
agent i and all her other neighbors by

C(i) = {j ∈Ni|∀k ∈N?
i \{j} : j B k}

Figure 3 demonstrates this definition on a simple network. Note that the agent depicted by
“...” represents some subgraph. The sets of neighbors are: N1 = {2,3,4}, N2 = {1,3,5}, N3 =
{1,2,4,5},N4 = {1,3, ...},N5 = {2,3}. The “more informed” relations are: 3B1, 3B2, 3B5
and 2B 5. Hence, C(1) =C(3) =C(4) = ∅, while C(2) =C(5) = {3}.

PROPOSITION 1: Let G=< V,E > be a network and let i ∈ V . Then, C(i) is either empty
and imitation could lead to sub optimal behavior by agent i or it is a singleton, C(i) = {j},
and ∀t > 2 : ai,t = aj,t−1 is optimal for agent i.

Using the example in Figure 3, Proposition 1 implies that agents 2 and 5 should imitate agent
3 since she is better informed than all the agents in their local neighborhood. Agent 1, however,
should not imitate agent 3 (even though agent 3 is better informed) since agent 3 is not better
informed than agent 4 who is a neighbor of agent 1. The reason is that when new information
arrives through agent 4, both agent 1 and agent 3 see it at the same time. Hence, imitation, in
this case, may lead to sub-optimal actions.3

Proof of Proposition 1. First, we formally define the notion of histories for each agent. The
history agent i observes at the beginning of period t > 1 is ht

i :N
?
i × {1, . . . , t− 1}→ {0,1}.

3Chandrasekhar et al. (2020) present their subjects with three network structures of seven nodes each. The original
version and our corrected proposition disagree only on agent 1 in network 3 who resides in a similar position to agent
3 in Figure 2. For this node, Chandrasekhar et al. (2020) conclude that she should imitate one of her two neighbors
while our corrected version states that she should avoid imitation. It is important to note that none of the results in the
original paper is affected by this discrepancy (including Panel B in Table 1).
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Note that ht
i is defined starting t= 2 since when taking the decision on the action in period 1,

the agent has no observations on herself or her neighbors’ previous actions.
Second, we show that C(i) is either a singleton or an empty set. Assume that j1 6= j2, j1 ∈

C(i) and j2 ∈C(i), that is, j1 and j2 are two distinct neighbors of agent i that belong to C(i).
Since j1 ∈ C(i), we get that ∀k ∈N?

i \{j1} : j1 B k. In particular, since j2 is a neighbor of
agent i we get j1 B j2. That is, N?

j2
( N?

j1
. Since the inclusion is strict, N?

j1
6⊂ N?

j2
. Hence,

j2 7 j1. Therefore, there exists a neighbor of agent i such that agent j2 is not strictly better
informed than her, that is, j2 /∈C(i). Contradiction. Therefore, |C(i)| ≤ 1.

Third, we show that if j ∈ C(i) then agent i would want to imitate agent j, i.e., ∀t≥ 3 :
ai,t = aj,t−1. Consider agent j ∈ C(i). Then, agent j is strictly better informed than agent i
and all her other neighbors (∀k ∈N?

i \{j} : jB k). Therefore, the information in ht−1
j includes

the information in ht−1
k for every k ∈N?

i \{j}. That is, for every k ∈N?
i \{j}, ht−1

k is the re-
striction of ht−1

j to N?
k . Since all the agents are myopic Bayesian, for every k ∈N?

i \{j}, agent
j can calculate ak,t−1 before observing it at the beginning of period t. Hence, every guess agent
i observes in the beginning of period t (∀k ∈N?

i : ht
i(k, t−1)), was already calculated by agent

j using ht−1
j alone.4 Therefore, we conclude that the information included in ht

i is embedded
in ht−1

j . Therefore, when agent i wishes to make her guess at period t she understands that the
observations that were at agent j’s disposal at the previous period were at least as informative
as her complete set of observations, and therefore it is optimal for her to guess ati = at−1

j , q.e.d.
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