Information Aggregation on Networks: an Experimental Study

Marina Agranov
(Caltech)

Ben Gillen
(Claremont McKenna College)

Dotan Persitz
(Tel Aviv U)
People learn, form opinions and shape beliefs both
 - by collecting noisy private info
 - by observing choices of others (family, friends, ...)

The architecture of social network and one’s position in it
determines info set available to the agent
People learn, form opinions and shape beliefs both
 - by collecting noisy private info
 - by observing choices of others (family, friends, ...)

Learning and info aggregation over networks
• People learn, form opinions and shape beliefs both
 • by collecting noisy private info
 • by observing choices of others (family, friends, ...)

• Learning and info aggregation over networks

• General setting
 • a group of agents are tied together by a social network
 • each observes noisy but informative signal about true state
 • all agents want to match the state
 • in every round, guess the state and observe neighbor’s guesses
People learn, form opinions and shape beliefs both
 - by collecting noisy private info
 - by observing choices of others (family, friends, ...)

Learning and info aggregation over networks

General setting
 - a group of agents are tied together by a social network
 - each observes noisy but informative signal about true state
 - all agents want to match the state
 - in every round, guess the state and observe neighbor’s guesses

The architecture of social network and one’s position in it determines info set available to the agent
Introduction, cont...

- Theoretical literature
 - tend to focus on societies of infinite size
 - mild conditions are sufficient for full convergence to the truth in connected societies
• Theoretical literature
 • tend to focus on societies of infinite size
 • mild conditions are sufficient for full convergence to the truth in connected societies

• What happens in finite but large societies?
• Theoretical literature
 • tend to focus on societies of infinite size
 • mild conditions are sufficient for full convergence to the truth in connected societies

• What happens in finite but large societies?

• Casual observation:
 • in some cases opinions do not seem to converge to a consensus even in connected societies, while in other cases they do
• Theoretical literature
 • tend to focus on societies of infinite size
 • mild conditions are sufficient for full convergence to the truth in connected societies

• What happens in finite but large societies?

• Casual observation:
 • in some cases opinions do not seem to converge to a consensus even in connected societies, while in other cases they do

• THIS PAPER:
 • explore effects of network architectures on dynamics of belief formation over large networks
 • characterize architecture features that prevent info aggregation
1. **Theoretical literature**
 - Bayesian model
 - Gale and Kariv (2003), Acemoglu et al. (’11), Muller-Frank (’13), Mossel, Sly and Tamuz (’15)
 - Naive Model
 - de Groot (’74), deMarzo et al. (’03), Golub and Jackson (’10, 2012), Acemoglu and Ozdaglar (’11)
 - Other theories
 - Bala and Goyal (’98), Jackson and Watts (’03), Goyal and Vega Redondo (’05)

2. **Empirical studies**
 - lab experiments focus on relatively small networks
 - Choi et al (’05, ’12), Corrazzini et al (’12), Mueller-Frank and Neri (’14), Grimm and Mengel (’20), Chandrasekhar et al. (’20)
 - field studies
 - Chandrasekhar et al. (’20), Banerjee et al (’19), Breza et al (’19)
• 10 games with same network (18 members in a network)
10 games with same network (18 members in a network)
Networks’ roles are re-shuffled in each game
10 games with same network (18 members in a network)

Networks’ roles are re-shuffled in each game

What happens in each game

- Round 1:
 - each player gets private signal about the state (iid, 70% correct)
 - guess the state

- Rounds 2 onwards:
 - observe guesses of neighbors and guess the state

- Game ends: if no one changes her guess in three consecutive rounds or with prob 50% after round 50

Incentives:
- $20 for correct guess in random round of random game, $5 o/w
- show-up fee $10
Experimental Design

- 10 games with same network (18 members in a network)
- Networks’ roles are re-shuffled in each game
- What happens in each game
 - Round 1:
 - each player gets private signal about the state (iid, 70% correct)
 - guess the state
 - Rounds 2 onwards:
 - observe guesses of neighbors and guess the state
 - Game ends: if no one changes her guess in three consecutive rounds or with prob 50% after round 50
- Incentives:
 - $20 for correct guess in random round of random game, $5 o/w
 - show-up fee $10
This is game 1. You are now in round 1.

Please guess the color chosen by the computer and press Submit.

[Options: WHITE, BLUE]
This is game 1. You are now in round 2

Please guess the color chosen by the computer and press Submit.

Submit
• Most sessions had more than 18 subjects

• 18 are placed in the network, others are observers (random)

• Observers’ task
 • observe network structure
 • pick a position in the network whose payoff you will get if this game is selected for payment

• Measure *perceived* centrality (payoffs)

• How does perceived centrality match centrality indices?
• What do we expect in this network?
• Fast convergence to the right guess
 • Round 1: report own signal
 • Rounds 2 - 4: observe all r1 guesses (signals), report majority one
What do we expect in these networks?

- Fast convergence to the right guess
 - Round 1: report own signal
 - Round 2: hub observes all signals, reports majority one
 - Round 3 - 5: all members imitate the hub
Networks, cont...

Two Cores One Link

Two Cores with Three Links

What do we expect in these networks?

- Depends on the distribution of signals in each cluster
- Fast convergence to the right guess
- Fast convergence to the wrong guess
 - One Link: 10-8, 4 wrong in each cluster, red nodes wrong signals
- Slow convergence (more than 7 rounds) to the right guess
What do we expect in this network?
- Depends on the distribution of signals in each cluster
- Fast/slow convergence to the right/wrong guess
- Separation of centrality indices at the node level
<table>
<thead>
<tr>
<th></th>
<th>UCI</th>
<th>UCSD</th>
<th>TAU</th>
<th>total # sessions</th>
<th>total # subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete 18</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5 sessions</td>
<td>106 subjects</td>
</tr>
<tr>
<td>Star 18</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>7 sessions</td>
<td>141 subjects</td>
</tr>
<tr>
<td>One Gatekeeper</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6 sessions</td>
<td>122 subjects</td>
</tr>
<tr>
<td>Single Mediator</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4 sessions</td>
<td>82 subjects</td>
</tr>
<tr>
<td>Two Cores One Link</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5 sessions</td>
<td>100 subjects</td>
</tr>
<tr>
<td>Two Cores Three Links</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3 sessions</td>
<td>60 subjects</td>
</tr>
<tr>
<td>Complex</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4 sessions</td>
<td>80 subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34 sessions</td>
<td>691 subjects</td>
</tr>
</tbody>
</table>
First look at the data

- Identify structural features of networks
- Does network architecture affect long-run outcomes?
- Empirical strategy
 - last 5 games in each session
 - regression analysis with clustering at the session level
Outcomes

1. Game length

2. Frac correct last round guesses
 - Consensus in last round
 - 0.5 = fully polarized, 1 = full consensus
 - How often last round majority is correct

3. Agree-to-disagree state in last round
 - 7-11 or 8-10 or 9-9

4. Evolution of frac of correct guesses

5. Evolution of consensus
1. Big Brother: one observes everyone
 - Star, One Gatekeeper, Single Mediator

2. One Cluster: one large group of highly connected nodes
 - One Gatekeeper, Complete

3. Two Clusters
 - Two Cores One Link, Two Cores Three Links, Complex
Examples of Structural Features

One Gatekeeper

Two Cores Three Links

Big Brother
One Cluster

No Big Brother
Two Clusters
Outcome_{nm} = \beta_0 + \beta_1 \cdot \text{Architecture Feature}_n + \epsilon_{nm}

Results

- **Networks with Big Brother**
 - games last longer \((p = 0.066) \)

- **Networks with One Cluster**
 - higher frac of correct last round guesses \((p = 0.074) \)
 - higher chance that majority is correct \((p = 0.026) \)
 - lower chance of agree-to-disagree \((p = 0.009) \)
 - 7% in One Gatekeeper

- **Networks with Two Clusters**
 - marginally lower consensus \((p = 0.097) \)
 - higher chance of agree-to-disagree \((p = 0.021) \)
 - 24% in Two Cores One Link
Similar consensus rates
Decrease in how often majority is correct over time
Networks w/ a cluster aggregate info better than those w/out
Agree-to-disagree state declines sharply with a cluster
Networks with Big Brother do not respond to info quality

But they are sensitive to Big Brother info
 - frac of correct last round guesses: 66% → 79%
 - consensus rates: 78% → 83%
Adding Links (Oversight)

- **Star → One Gatekeeper**
 - frac of correct guesses increases
 - consensus rates stays same, but majority is correct more often
 - agree-to-disagree state is less frequent
• Two Cores One Link
 • distribution of signals 12-6, both hubs have correct signal

• Session 6, Game 7
 • left cluster: signals 6/9 correct, last guesses all correct
 • right cluster: signals 6/9 correct, last guesses 6/9 correct
 • frac of correct last round guesses is 83% and consensus is 83%

• Session 6, Game 10
 • left cluster: signals 8/9 correct, last guesses 7/9 correct
 • right cluster: signals 4/9 correct, last guesses all wrong
 • frac of correct last round guesses is 39% and consensus is 61%
Aggregate Network Measures

\[\text{Outcome}_{nm} = \beta_0 + \beta_1 \cdot \text{Info}_{nm} + \beta_2 \cdot \text{Measure}_n + \epsilon_{nm} \]

- \(n \) - network type, \(m \) - match in a session
- cluster by session
- Info is % correct signals minus 0.7 (av quality info)
- Measures
 - Diameter
 - Density
Aggregate Network Measures: Results

- Frac Correct Guesses
 - positively corr with Density \((p = 0.02)\)
 - negatively corr with Diameter \((p = 0.004)\)

- Consensus
 - negatively corr with Diameter \((p = 0.002)\)

- Majority correct
 - positively corr with Density \((p = 0.007)\)

- Agree-to-Disagree
 - positively corr with Diameter \((p = 0.02)\)
• Network architectures matters
 • for long-run outcomes
 • evolution of outcomes over time

• Local information plays an important role
 • distribution of signals in networks with clusters
 • signal of Big Brother
 • oversight (‘unnecessary links’)

• Standard measures pick up some of these patterns
• How fast different nodes make up their minds?

• Do subjects change their mind (last guess \(\neq \) first guess)?

• Do you learn directly from your local connections (second guess \(\neq \) first guess)?

• Do subjects learn correctly (signal \(\neq \) last guess = state)?

• Which nodes are correct more often? (payoffs)
• Networks w/ Big Brother: hubs converge faster than others
• Networks w/ Two Cores: clusters take longer than ‘connectors’
Differentiation of centrality measures at the node level

- Degree centrality: blue > purple > red = green
- Betweenness: red = purple > blue > green
- Eigenvalue centrality: blue > purple > green > red
Individual outcomes and node centrality

\[
\text{Outcome}_{i_m} = \beta_0 + \beta_1 \cdot \text{Degree}_i + \beta_2 \cdot \text{Betweenness}_i + \beta_3 \cdot \text{Eigenvalue}_i + \\
\quad + \beta_4 \cdot \text{My Info}_{i_m} + \beta_5 \cdot \text{Network Info}_{i_m} + \epsilon_{i_m}
\]

Results

<table>
<thead>
<tr>
<th></th>
<th>Freq Correct (all rounds)</th>
<th>Correct (last round)</th>
<th>Changed Mind last – first</th>
<th>Learned Correctly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree</td>
<td>0.09**</td>
<td>0.12**</td>
<td>0.05</td>
<td>0.07*</td>
</tr>
<tr>
<td>Betweenness</td>
<td>-0.02</td>
<td>-0.03</td>
<td>0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td>Eigenvalue</td>
<td>0.04</td>
<td>0.03</td>
<td>-0.24**</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

significant at ** 5%, at * 10%
Perceived Centrality: Observers

- Most choose nodes with highest degree and best performance
- Some pick nodes with high betweenness

<table>
<thead>
<tr>
<th></th>
<th>Observers’ Choice</th>
<th>Theory</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>raw %</td>
<td>rescaled</td>
<td>degree</td>
</tr>
<tr>
<td>Blue</td>
<td>0.67</td>
<td>0.43</td>
<td>0.29</td>
</tr>
<tr>
<td>Red</td>
<td>0.10</td>
<td>0.27</td>
<td>0.12</td>
</tr>
<tr>
<td>Purple</td>
<td>0.15</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>Green</td>
<td>0.08</td>
<td>0.11</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Conclusions and Next Steps

- Variation in network-level outcomes is related to structure features of networks
 - networks w/ well connected group aggregate info better and have lower chance of agree-to-disagree state
 - networks w/ Big Brother do not respond to info quality but instead to Big Brother’s info
- Information aggregation does occur, but imperfectly
- Local information plays an important role
- Network position affects individual outcomes
 - hubs form their opinion faster than other members
 - nodes w/ higher degree are more likely to learn true state
 - nodes w/ higher eigenvalue are less likely to change their mind
- Observers’ choices (perceived centrality)
 - heterogeneity, matches actual nodes’ performance
- NEXT STEP: structural estimation of learning strategies
Additional Materials
Frequency of Correct Last Guesses

74% 79% 71% 76% 80% 69% 83%

Star 18 One Gate Single Mediator Equal Cores 3-Linked Cores Two Groups Complete 9 Comple
Consensus in the Last Round

- Star 18: 83%
- One Gate: 82%
- Single Mediator: 77%
- Equal Cores: 78%
- 3-Linked Cores: 82%
- Two Groups: 73%
- Complete 9: 88%
How Often Majority is Correct?

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star 18</td>
<td>77%</td>
</tr>
<tr>
<td>One Gate</td>
<td>90%</td>
</tr>
<tr>
<td>Single Mediator</td>
<td>85%</td>
</tr>
<tr>
<td>Equal Cores</td>
<td>80%</td>
</tr>
<tr>
<td>3-Linked Cores</td>
<td>91%</td>
</tr>
<tr>
<td>Two Groups</td>
<td>86%</td>
</tr>
<tr>
<td>Complete 9</td>
<td>91%</td>
</tr>
</tbody>
</table>